已知集合P={x|x2-3x-4>0},Q={x|a+1≤x≤2a-1},若Q?P,則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專題:不等式的解法及應(yīng)用,集合
分析:根據(jù)條件Q?P得Q=∅,或Q≠∅,Q=∅時(shí),a+1>2a-1,所以a<2.若Q≠∅時(shí),
a+1≤2a-1
2a-1<-1
a+1≤2a-1
a+1>4
,解出不等式即可,從而求得a的取值范圍.
解答: 解:P={x|x<-1,或x>4};
∵Q?P
∴若Q=∅,則a+1>2a-1,∴a<2;
若Q≠∅,∵Q?P,∴
a+1≤2a-1
2a-1<-1
a+1≤2a-1
a+1>4
,解得a>3.
∴a的取值范圍是{x|x<2,或x>3}.
故答案為:{x|x<2,或x>3}.
點(diǎn)評(píng):考查子集的概念,一元二次不等式解的情況,不要漏了Q=∅的情況.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△AOB的邊OA、OB上分別有一點(diǎn)P、Q,已知OP:PA=1:2,OQ:QB=3:2,連結(jié)AQ、BP,設(shè)它們交于R點(diǎn),若
OA
=
a
,
OB
=
b
,設(shè)
OR
a
b
,試求出λ和μ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+y2=1(a>1)的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)S(0,-
1
3
)的直線l交橢圓C于A、B兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)T,使得以AB為直徑的圓恒過點(diǎn)T?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)袋子內(nèi)裝有除顏色不同外其余完全相同的3個(gè)白球和2個(gè)黑球,從中不放回地任取兩次,每次取一球,在第一次取到的是白球的條件下,第二次也取到白球的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面上,命題P:動(dòng)點(diǎn)M的軌跡是雙曲線是命題Q:M到兩定點(diǎn)的距離之差的絕對(duì)值為定值的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>1,若不等式loga+1x-logax+5<n+
6
n
對(duì)任意n∈N*恒成立,則實(shí)數(shù)x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩燈塔A、B與海洋觀察站C的距離都等于2km,燈塔A在C北偏東45°處,燈塔B在C南偏東15°處,則A、B之間的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A、B是離心率為e的橢圓的兩焦點(diǎn),C是橢圓上除長軸端點(diǎn)外的任意一點(diǎn),則在△ABC中,
sinC
sinA+sinB
=e;類比上述性質(zhì):若A、B是離心率為e的雙曲線的兩焦點(diǎn),C是雙曲線上除實(shí)軸端點(diǎn)外的任意一點(diǎn),則在△ABC中有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把1,3,6,10,15,21,…這些數(shù)叫做三角形數(shù),這是因?yàn)檫@些數(shù)目的點(diǎn)可以排成一個(gè)正三角形(如圖),則第2013個(gè)三角形數(shù)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案