【題目】圓x2+y2=4的切線與x軸正半軸,y軸正半軸圍成一個(gè)三角形,當(dāng)該三角形面積最小時(shí),切點(diǎn)為P(如圖),雙曲線C1 =1過點(diǎn)P且離心率為

(1)求C1的方程;
(2)若橢圓C2過點(diǎn)P且與C1有相同的焦點(diǎn),直線l過C2的右焦點(diǎn)且與C2交于A,B兩點(diǎn),若以線段AB為直徑的圓過點(diǎn)P,求l的方程.

【答案】
(1)解:設(shè)切點(diǎn)P(x0,y0),(x0>0,y0>0),則切線的斜率為 ,

可得切線的方程為 ,化為x0x+y0y=4.

令x=0,可得 ;令y=0,可得

∴切線與x軸正半軸,y軸正半軸圍成一個(gè)三角形的面積S= =

∵4= ,當(dāng)且僅當(dāng) 時(shí)取等號(hào).

.此時(shí)P

由題意可得 , ,解得a2=1,b2=2.

故雙曲線C1的方程為


(2)解:由(1)可知雙曲線C1的焦點(diǎn)(± ,0),即為橢圓C2的焦點(diǎn).

可設(shè)橢圓C2的方程為 (b1>0).

把P 代入可得 ,解得 =3,

因此橢圓C2的方程為

由題意可設(shè)直線l的方程為x=my+ ,A(x1,y1),B(x2,y2),

聯(lián)立 ,化為 ,

,

∴x1+x2= = ,

x1x2= =

,

,∴

+ ,

,解得m= 或m= ,

因此直線l的方程為:


【解析】(1)設(shè)切點(diǎn)P(x0 , y0),(x0>0,y0>0),利用相互垂直的直線斜率之間的關(guān)系可得切線的斜率和切線的方程,即可得出三角形的面積,利用基本不等式的性質(zhì)可得點(diǎn)P的坐標(biāo),再利用雙曲線的標(biāo)準(zhǔn)方程及其性質(zhì)即可得出;(2)由(1)可得橢圓C2的焦點(diǎn).可設(shè)橢圓C2的方程為 (b1>0).把P的坐標(biāo)代入即可得出方程.由題意可設(shè)直線l的方程為x=my+ ,A(x1 , y1),B(x2 , y2),與橢圓的方程聯(lián)立即可得出根與系數(shù)的關(guān)系,再利用向量垂直與數(shù)量積的關(guān)系即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)y=2sin(πx+φ),x∈R(其中0≤φ≤ )的圖象與y軸交于點(diǎn)(0,1).

(1)求φ的值.
(2)設(shè)P是圖象上的最高點(diǎn),M、N是圖象與x軸的交點(diǎn),求tan∠MPN的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0),直線y=x+ 與以原點(diǎn)為圓心,以橢圓C的短半軸為半徑的圓相切,F(xiàn)1 , F2為其左右焦點(diǎn),P為橢圓C上的任意一點(diǎn),△F1PF2的重心為G,內(nèi)心為I,且IG∥F1F2
(1)求橢圓C的方程;
(2)已知A為橢圓C上的左頂點(diǎn),直線∫過右焦點(diǎn)F2與橢圓C交于M,N兩點(diǎn),若AM,AN的斜率k1 , k2滿足k1+
k2=﹣ ,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】所謂正三棱錐,指的是底面為正三角形,頂點(diǎn)在底面上的射影為底面三角形中心的三棱錐,在正三棱錐S﹣ABC中,M是SC的中點(diǎn),且AM⊥SB,底面邊長(zhǎng)AB=2 ,則正三棱錐S﹣ABC的體積為 , 其外接球的表面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)氣象部門預(yù)報(bào),在距離碼頭A南偏東45°方向400千米B處的臺(tái)風(fēng)中心正以20千米每小時(shí)的速度向北偏東15°方向沿直線移動(dòng),以臺(tái)風(fēng)中心為圓心,距臺(tái)風(fēng)中心100 千米以內(nèi)的地區(qū)都將受到臺(tái)風(fēng)影響.據(jù)以上預(yù)報(bào)估計(jì),從現(xiàn)在起多長(zhǎng)時(shí)間后,碼頭A將受到臺(tái)風(fēng)的影響?影響時(shí)間大約有多長(zhǎng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓滿足:(1)截軸所得弦長(zhǎng)為2;(2)被軸分成兩段圓弧,其弧長(zhǎng)的比為.在滿足條件(1)、(2)的所有圓中,圓心到直線的距離最小的圓的方程為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加高三期中考試的學(xué)生中抽出50名學(xué)生,并統(tǒng)計(jì)了他們的數(shù)學(xué)成績(jī)(成績(jī)均為整數(shù)且滿分為100分),數(shù)學(xué)成績(jī)分組及樣本頻率分布表如下:

分組

頻數(shù)

頻率

[40,50)

2

0.04

[50,60)

3

0.06

[60,70)

14

0.28

[70,80)

15

[80,90)

0.24

[90,100]

4

0.08

合計(jì)


(1)請(qǐng)把給出的樣本頻率分布表中的空格都填上;
(2)為了幫助成績(jī)差的學(xué)生提高數(shù)學(xué)成績(jī),學(xué)校決定成立“二幫一”小組,即從成績(jī)[90,100]中選兩位同學(xué),共同幫助[40,50)中的某一位同學(xué),已知甲同學(xué)的成績(jī)?yōu)?2分,乙同學(xué)的成績(jī)?yōu)?5分,求甲、乙兩同學(xué)恰好被安排在同一小組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】連接球面上兩點(diǎn)的線段稱為球的弦,半徑為4的球的兩條弦AB、CD的長(zhǎng)度分別為2 和4 ,M、N分別是AB、CD的中點(diǎn),兩條弦的兩端都在球面上運(yùn)動(dòng),有下面四個(gè)命題:
①弦AB、CD可能相交于點(diǎn)M;
②弦AB、CD可能相交于點(diǎn)N;
③MN的最大值是5;
④MN的最小值是1;
其中所有正確命題的序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)不等式組 所表示的平面區(qū)域?yàn)镈n , 記Dn內(nèi)的格點(diǎn)(格點(diǎn)即橫坐標(biāo)和縱坐標(biāo)皆為整數(shù)的點(diǎn))的個(gè)數(shù)為f(n)(n∈N*).
(1)求f(1)、f(2)的值及f(n)的表達(dá)式;
(2)設(shè)bn=2nf(n),Sn為{bn}的前n項(xiàng)和,求Sn
(3)記 ,若對(duì)于一切正整數(shù)n,總有Tn≤m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案