【題目】所謂正三棱錐,指的是底面為正三角形,頂點(diǎn)在底面上的射影為底面三角形中心的三棱錐,在正三棱錐S﹣ABC中,M是SC的中點(diǎn),且AM⊥SB,底面邊長(zhǎng)AB=2 ,則正三棱錐S﹣ABC的體積為 , 其外接球的表面積為 .
【答案】;12π
【解析】解:設(shè)O為S在底面ABC的投影,則O為等邊三角形ABC的中心,
∵SO⊥平面ABC,AC平面ABC,
∴AC⊥SO,又BO⊥AC,
∴AC⊥平面SBO,∵SB平面SBO,
∴SB⊥AC,又AM⊥SB,AM平面SAC,AC平面SAC,AM∩AC=A,
∴SB⊥平面SAC,
同理可證SC⊥平面SAB.
∴SA,SB,SC兩兩垂直.
∵△SOA≌△SOB≌△SOC,
∴SA=SB=SC,
∵AB=2 ,∴SA=SB=SC=2.
∴三棱錐的體積V= = .
設(shè)外接球球心為N,則N在SO上.
∵BO= = .∴SO= = ,
設(shè)外接球半徑為r,則NO=SO﹣r= ﹣r,NB=r,
∵OB2+ON2=NB2 , ∴ +( )2=r2 , 解得r= .
∴外接球的表面積S=4π×3=12π.
所以答案是: ,12π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2015男籃亞錦賽決賽階段,中國(guó)男籃以連勝的不敗成績(jī)贏得第屆亞錦賽冠軍,同時(shí)拿到亞洲唯一張直通里約奧運(yùn)會(huì)的入場(chǎng)券.賽后,中國(guó)男籃主力易建聯(lián)榮膺本屆亞錦賽(最有價(jià)值球員),下表是易建聯(lián)在這場(chǎng)比賽中投籃的統(tǒng)計(jì)數(shù)據(jù).
比分 | 易建聯(lián)技術(shù)統(tǒng)計(jì) | |||
投籃命中 | 罰球命中 | 全場(chǎng)得分 | 真實(shí)得分率 | |
中國(guó)新加坡 | ||||
中國(guó)韓國(guó) | ||||
中國(guó)約旦 | ||||
中國(guó)哈薩克斯坦 | ||||
中國(guó)黎巴嫩 | ||||
中國(guó)卡塔爾 | ||||
中國(guó)印度 | ||||
中國(guó)伊朗 | ||||
中國(guó)菲律賓 |
注:(1)表中表示出手次命中次;
(2)(真實(shí)得分率)是衡量球員進(jìn)攻的效率,其計(jì)算公式為:
(1)從上述場(chǎng)比賽中隨機(jī)選擇一場(chǎng),求易建聯(lián)在該場(chǎng)比賽中超過(guò)的概率;
(2)我們把比分分差不超過(guò)分的比賽稱(chēng)為“膠著比賽”.為了考驗(yàn)求易建聯(lián)在“膠著比賽”中的發(fā)揮情況,從“膠著比賽”中隨機(jī)選擇兩場(chǎng),求易建聯(lián)在這兩場(chǎng)比賽中至少有一場(chǎng)超過(guò)的概率;
(3)用來(lái)表示易建聯(lián)某場(chǎng)的得分,用來(lái)表示中國(guó)隊(duì)該場(chǎng)的總分,畫(huà)出散點(diǎn)圖如圖所示,請(qǐng)根據(jù)散點(diǎn)圖判斷與之間是否具有線(xiàn)性相關(guān)關(guān)系?結(jié)合實(shí)際簡(jiǎn)單說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是正方形, 底面, ,點(diǎn), 分別為棱, 的中點(diǎn)。
(1)求證: 平面;
(2)求證:平面平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄AQ過(guò)定點(diǎn)F(0,﹣1),且與直線(xiàn)y=1相切;橢圓N的對(duì)稱(chēng)軸為坐標(biāo)軸,中心為坐標(biāo)原點(diǎn)O,F(xiàn)是其一個(gè)焦點(diǎn),又點(diǎn)(0,2)在橢圓N上.
(1)求動(dòng)圓圓心Q的軌跡M的方程和橢圓N的方程;
(2)過(guò)點(diǎn)(0,﹣4)作直線(xiàn)l交軌跡M于A,B兩點(diǎn),連結(jié)OA,OB,射線(xiàn)OA,OB交橢圓N于C,D兩點(diǎn),求△OCD面積的最小值.
(3)附加題:過(guò)橢圓N上一動(dòng)點(diǎn)P作圓x2+(y﹣1)2=1的兩條切線(xiàn),切點(diǎn)分別為G,H,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知F1 , F2分別為雙曲線(xiàn) ﹣ =1(a>0,b>0)的左右焦點(diǎn),如果雙曲線(xiàn)上存在一點(diǎn)P,使得F2關(guān)于直線(xiàn)PF1的對(duì)稱(chēng)點(diǎn)恰在y軸上,則該雙曲線(xiàn)的離心率e的取值范圍為( )
A.e>
B.1<e<
C.e>
D.1<e<
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(Ⅰ)若函數(shù)的圖像在點(diǎn)處的切線(xiàn)與直線(xiàn)平行,求實(shí)數(shù)的值;
(Ⅱ)討論函數(shù)的單調(diào)性;
(Ⅲ)若在函數(shù)定義域內(nèi),總有成立,試求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓x2+y2=4的切線(xiàn)與x軸正半軸,y軸正半軸圍成一個(gè)三角形,當(dāng)該三角形面積最小時(shí),切點(diǎn)為P(如圖),雙曲線(xiàn)C1: ﹣ =1過(guò)點(diǎn)P且離心率為 .
(1)求C1的方程;
(2)若橢圓C2過(guò)點(diǎn)P且與C1有相同的焦點(diǎn),直線(xiàn)l過(guò)C2的右焦點(diǎn)且與C2交于A,B兩點(diǎn),若以線(xiàn)段AB為直徑的圓過(guò)點(diǎn)P,求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=4,E為DC邊的中點(diǎn),沿AE將△ADE折起,在折起過(guò)程中,有幾個(gè)正確( )
①ED⊥平面ACD ②CD⊥平面BED ③BD⊥平面ACD ④AD⊥平面BED.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com