【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)寫出曲線的普通方程和直線的直角坐標(biāo)方程;
(2)若直線與曲線相交于、兩點(diǎn),求的面積.
【答案】(1),;(2).
【解析】
(1)在曲線的參數(shù)方程中消去參數(shù),可得出曲線的普通方程,將直線的極坐標(biāo)方程化簡(jiǎn)為,由可將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)計(jì)算出圓心到直線的距離,利用勾股定理計(jì)算出,并計(jì)算出原點(diǎn)到直線的距離,進(jìn)而利用三角形的面積公式可求得的面積.
(1)由,得,
故曲線的普通方程是.
由,得,
得,得,
代入公式得.
故直線的直角坐標(biāo)方程是;
(2)因?yàn)樵c(diǎn)到直線的距離為,
曲線表示圓心為,半徑的圓.
又到直線的距離,所以.
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列五個(gè)命題,其中正確命題的個(gè)數(shù)為( )
①命題“,使得”的否定是“,均有”;
②若正整數(shù)和滿足,則;
③在中 ,是的充要條件;
④一條光線經(jīng)過點(diǎn),射在直線上,反射后穿過點(diǎn),則入射光線所在直線的方程為;
⑤已知的三個(gè)零點(diǎn)分別為一橢圓、一雙曲線、一拋物線的離心率,則為定值.
A.2B.3C.4D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知如圖1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D為AC中點(diǎn),AEBD于E,延長AE交BC于F,將△ABD沿BD折起,使平面ABD平面BCD,如圖2所示。
(Ⅰ)求證:AE平面BCD;
(Ⅱ)求二面角A-DC-B的余弦值;
(Ⅲ)求三棱錐B-AEF與四棱錐A-FEDC的體積的比(只需寫出結(jié)果,不要求過程).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分配名工人去個(gè)不同的居民家里檢查管道,要求名工人都分配出去,并且每名工人只去一個(gè)居民家,且每個(gè)居民家都要有人去檢查,那么分配的方案共有( )
A.種B.種C.種D.種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:的焦點(diǎn)為,拋物線上的點(diǎn)到準(zhǔn)線的最小距離為2.
(1)求拋物線的方程;
(2)若過點(diǎn)作互相垂直的兩條直線,,與拋物線交于,兩點(diǎn),與拋物線交于,兩點(diǎn),,分別為弦,的中點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于非負(fù)整數(shù)集合(非空),若對(duì)任意,或者,或者,則稱為一個(gè)好集合.以下記為的元素個(gè)數(shù).
(1)給出所有的元素均小于的好集合.(給出結(jié)論即可)
(2)求出所有滿足的好集合.(同時(shí)說明理由)
(3)若好集合滿足,求證:中存在元素,使得中所有元素均為的整數(shù)倍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的焦距為2,左頂點(diǎn)與上頂點(diǎn)連線的斜率為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)P(m,0)作圓x2+y2=1的一條切線l交橢圓C于M,N兩點(diǎn),當(dāng)|MN|的值最大時(shí),求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com