【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)寫出曲線的普通方程和直線的直角坐標(biāo)方程;

2)若直線與曲線相交于、兩點(diǎn),求的面積.

【答案】1,;(2.

【解析】

1)在曲線的參數(shù)方程中消去參數(shù),可得出曲線的普通方程,將直線的極坐標(biāo)方程化簡(jiǎn)為,由可將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;

2)計(jì)算出圓心到直線的距離,利用勾股定理計(jì)算出,并計(jì)算出原點(diǎn)到直線的距離,進(jìn)而利用三角形的面積公式可求得的面積.

1)由,得,

故曲線的普通方程是.

,得,

,得,

代入公式.

故直線的直角坐標(biāo)方程是;

2)因?yàn)樵c(diǎn)到直線的距離為,

曲線表示圓心為,半徑的圓.

到直線的距離,所以.

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列五個(gè)命題,其中正確命題的個(gè)數(shù)為(

①命題,使得的否定是,均有

②若正整數(shù)滿足,則;

③在 的充要條件;

④一條光線經(jīng)過點(diǎn),射在直線上,反射后穿過點(diǎn),則入射光線所在直線的方程為

⑤已知的三個(gè)零點(diǎn)分別為一橢圓、一雙曲線、一拋物線的離心率,則為定值.

A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知如圖1,在RtABC中,∠ACB=30°,∠ABC=90°,DAC中點(diǎn),AEBDE,延長AEBCF,將ABD沿BD折起,使平面ABD平面BCD,如圖2所示。

(Ⅰ)求證:AE平面BCD;

(Ⅱ)求二面角A-DC-B的余弦值;

(Ⅲ)求三棱錐B-AEF與四棱錐A-FEDC的體積的比(只需寫出結(jié)果,不要求過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分配名工人去個(gè)不同的居民家里檢查管道,要求名工人都分配出去,并且每名工人只去一個(gè)居民家,且每個(gè)居民家都要有人去檢查,那么分配的方案共有(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,拋物線上的點(diǎn)到準(zhǔn)線的最小距離為2.

1)求拋物線的方程;

2)若過點(diǎn)作互相垂直的兩條直線,與拋物線交于,兩點(diǎn),與拋物線交于,兩點(diǎn),,分別為弦,的中點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求的定義域;

2)判斷的奇偶性并予以證明;

3)求滿足的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若方程有兩個(gè)不同的實(shí)數(shù)解,則b的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于非負(fù)整數(shù)集合(非空),若對(duì)任意,或者,或者,則稱個(gè)好集合.以下記的元素個(gè)數(shù).

1)給出所有的元素均小于的好集合.(給出結(jié)論即可)

2)求出所有滿足的好集合.(同時(shí)說明理由)

3)若好集合滿足,求證:中存在元素,使得中所有元素均為的整數(shù)倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的焦距為2,左頂點(diǎn)與上頂點(diǎn)連線的斜率為

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)過點(diǎn)Pm,0)作圓x2+y21的一條切線l交橢圓CM,N兩點(diǎn),當(dāng)|MN|的值最大時(shí),求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案