【題目】已知函數(shù)是奇函數(shù)
(1)求的值;
(2)當時,求不等式成立,求的取值范圍;
【答案】(1)k=﹣1;(2)見解析
【解析】
(1)可根據(jù)條件得出f(x)是R上的奇函數(shù),從而得出f(0)=0,從而求出k=﹣1;
(2)f(x)=ax﹣a﹣x,求導(dǎo)得出f′(x)=(ax﹣a﹣x)lna,可討論a,根據(jù)導(dǎo)數(shù)符號判斷f(x)在(﹣1,1)上的單調(diào)性,這樣根據(jù)f(x)是奇函數(shù)以及f(x)的單調(diào)性即可由不等式f(1﹣m)+f(1﹣2m)<0得出關(guān)于m的不等式組,解不等式組即可得出m的范圍.
(1)∵f(x)是R上的奇函數(shù),∴f(0)=1+k=0,∴k=﹣1;
(2)f(x)=ax﹣a﹣x,f′(x)=(ax+a﹣x)lna,
∴①0<a<1時,f′(x)<0,f(x)在(﹣1,1)上單調(diào)遞減,且f(x)是奇函數(shù),
∴由f(1﹣m)+f(1﹣2m)<0得,f(1﹣m)<f(2m﹣1),
∴,解得;
②a>1時,f′(x)>0,f(x)在(﹣1,1)上單調(diào)遞增,且f(x)是奇函數(shù),
∴由f(1﹣m)+f(1﹣2m)<0得,f(1﹣m)<f(2m﹣1),
∴,解得,
綜上:當0<a<1時,m的取值范圍為,當a>1時,m的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代的數(shù)學(xué)名著,書中把三角形的田稱為“圭田”,把直角梯形的田稱為“邪田”,稱底是“廣”,稱高是“正從”,“步”是丈量土地的單位.現(xiàn)有一邪田,廣分別為十步和二十步,正從為十步,其內(nèi)有一塊廣為八步,正從為五步的圭田.若在邪田內(nèi)隨機種植一株茶樹,求該株茶樹恰好種在圭田內(nèi)的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對同一類的四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:
甲說:“或作品獲得一等獎”; 乙說:“作品獲得一等獎”;
丙說:“,兩項作品未獲得一等獎”; 丁說:“作品獲得一等獎”.
若這四位同學(xué)只有兩位說的話是對的,則獲得一等獎的作品是( )
A. 作品 B. 作品 C. 作品 D. 作品
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】德國數(shù)學(xué)家科拉茨年提出了一個著名的猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半(即);如果是奇數(shù),則將它乘加(即),不斷重復(fù)這樣的運算,經(jīng)過有限步后,一定可以得到.對于科拉茨猜想,目前誰也不能證明,也不能否定.現(xiàn)在請你研究:如果對正整數(shù)(首項)按照上述規(guī)則施行變換后的第項為(注:可以多次出現(xiàn)),則的所有不同值的個數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓+=1(a>b>0)上的點P到左,右兩焦點F1,F2的距離之和為2,離心率為.
(1)求橢圓的標準方程;
(2)過右焦點F2的直線l交橢圓于A,B兩點,若y軸上一點M(0,)滿足|MA|=|MB|,求直線l的斜率k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,平面.
(1)證明:平面;
(2)過點作一平行于平面的截面,畫出該截面,說明理由,并求夾在該截面與平面之間的幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)及函數(shù)(a,b,c∈R),若a>b>c且a+b+c=0.
(1)證明:f(x)的圖像與g(x)的圖像一定有兩個交點;
(2)請用反證法證明:;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com