【題目】在如圖所示的幾何體中,平面.

(1)證明:平面;

(2)過點(diǎn)作一平行于平面的截面,畫出該截面,說明理由,并求夾在該截面與平面之間的幾何體的體積.

【答案】(1)證明見解析;(2).

【解析】分析:(1)由余弦定理結(jié)合勾股定理可證明,利用線面垂直的性質(zhì)可證明由線面垂直的判定定理可得平面;(2)的中點(diǎn),的中點(diǎn),連接,截面即為所求由(1)可知,平面,平面, 由“分割法”利用棱錐的體積公式可得結(jié)果.

詳解(1)證明:在中,.

所以,所以為直角三角形,.

又因?yàn)?/span>平面,所以.

,所以平面.

(2)取的中點(diǎn),的中點(diǎn),連接,平面即為所求.

理由如下:

因?yàn)?/span>,所以四邊形為平行四邊形,所以,從而平面

同理可證平面.

因?yàn)?/span>,所以平面平面.

由(1)可知,平面,平面.

因?yàn)?/span>

,

所以,所求幾何體的體積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)互為相反數(shù),且,函數(shù)的定義域?yàn)?/span>.

1)求的值;

2)若,求的值域;

3)若函數(shù)的最大值為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的焦點(diǎn)坐標(biāo)分別為,,為橢圓上一點(diǎn),滿足

(1) 求橢圓的標(biāo)準(zhǔn)方程:

(2) 設(shè)直線與橢圓交于兩點(diǎn),點(diǎn),若的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)相鄰兩個(gè)最高點(diǎn)的距離等于

(1)求的值;

(2)求出函數(shù)的對稱軸,對稱中心;

(3)把函數(shù)圖象上所有點(diǎn)的縱坐標(biāo)伸長到原來的3倍(橫坐標(biāo)不變),得到函數(shù),再把函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù),不需要過程,直接寫出函數(shù)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是奇函數(shù)

1)求的值;

(2)當(dāng)時(shí),求不等式成立,求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中數(shù)列是公比為的等比數(shù)列,數(shù)列是公差為的等差數(shù)列.

1)若,,分別寫出數(shù)列和數(shù)列的通項(xiàng)公式;

2)若是奇函數(shù),且,求;

3)若函數(shù)的圖像關(guān)于點(diǎn)對稱,且當(dāng)時(shí),函數(shù)取得最小值,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了引導(dǎo)居民合理用水,某市決定全面實(shí)施階梯水價(jià).階梯水價(jià)原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價(jià),具體劃分標(biāo)準(zhǔn)如表:

階梯級(jí)別

第一階梯水量

第二階梯水量

第三階梯水量

月用水量范圍(單位:立方米)

從本市隨機(jī)抽取了10戶家庭,統(tǒng)計(jì)了同一月份的月用水量,得到如圖莖葉圖:

(1)現(xiàn)要在這10戶家庭中任意選取3家,求取到第二階梯水量的戶數(shù)的分布列與數(shù)學(xué)期望;

(2)用抽到的10戶家庭作為樣本估計(jì)全市的居民用水情況,從全市依次隨機(jī)抽取10戶,若抽到戶月用水量為二階的可能性最大,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三角形面積為,,為三角形三邊長,為三角形內(nèi)切圓半徑,利用類比推理,可以得出四面體的體積為( )

A.

B.

C. 為四面體的高)

D. (其中,,分別為四面體四個(gè)面的面積,為四面體內(nèi)切球的半徑,設(shè)四面體的內(nèi)切球的球心為,則球心到四個(gè)面的距離都是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年3月3日至20日中華人民共和國第十三屆全國人民代表大會(huì)第一次會(huì)議和中國人民政治協(xié)商會(huì)議第十三屆全國委員會(huì)第一次會(huì)議在北京勝利召開,兩會(huì)是年度中國政治生活中的一件大事,受到了舉國上下和全世界的廣泛關(guān)注.為及時(shí)宣傳國家政策,貫徹兩會(huì)精神,某校舉行了全國兩會(huì)知識(shí)競賽,為了解本次競賽成績情況,隨機(jī)抽取了部分學(xué)生的成績(得分均為整數(shù),滿分分,最低分不低于分)進(jìn)行統(tǒng)計(jì),得出頻率分布表如下:

組號(hào)

分組

頻數(shù)

頻率

第1組

第2組

第3組

第4組

第5組

合計(jì)

(1)求表中、、、的值;

(2)若從成績較好的第、、組中用分層抽樣的方法抽取人擔(dān)任兩會(huì)知識(shí)宣傳員,再從這人中隨機(jī)選出人負(fù)責(zé)整理兩會(huì)相關(guān)材料,求這人中至少有人來自第組的概率.

查看答案和解析>>

同步練習(xí)冊答案