【題目】在△ABC中,a=3,,B=2A.
(Ⅰ)求cosA的值;
(Ⅱ)試比較∠B與∠C的大。
【答案】(Ⅰ);(Ⅱ)∠B<∠C
【解析】
(Ⅰ)由已知利用正弦定理,二倍角的正弦函數(shù)公式即可求得cosA的值.(Ⅱ)利用同角三角函數(shù)基本關(guān)系式可求sinA,利用二倍角公式可求cosB,進(jìn)而可求sinB的值,根據(jù)三角形內(nèi)角和定理,兩角和的余弦函數(shù)公式可求cosC的值,由于cosB>cosC,根據(jù)余弦函數(shù)的圖象和性質(zhì)可求∠B<∠C.
(Ⅰ)∵a=3,,B=2A.
∴由正弦定理可得:,
∴cosA;
(Ⅱ)∵A∈(0,π),可得:sinA,∵B=2A,
∴cosB=cos2A=2cos2A﹣1,∴sinB,
∵A+B+C=π,∴cosC=﹣cos(A+B)=sinAsinB﹣cosAcosB,∴cosB>cosC,
又∵函數(shù)y=cosx在(0,π)上單調(diào)遞減,且B,C∈(0,π),∴∠B<∠C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了讓稅收政策更好的為社會(huì)發(fā)展服務(wù),國(guó)家在修訂《中華人民共和國(guó)個(gè)人所得稅法》之后,發(fā)布了《個(gè)人所得稅專項(xiàng)附加扣除暫行辦法》,明確“專項(xiàng)附加扣除”就是子女教育、繼續(xù)教育大病醫(yī)療、住房貸款利息、住房租金贈(zèng)養(yǎng)老人等費(fèi)用,并公布了相應(yīng)的定額扣除標(biāo)準(zhǔn),決定自2019年1月1日起施行,某機(jī)關(guān)為了調(diào)查內(nèi)部職員對(duì)新個(gè)稅方案的滿意程度與年齡的關(guān)系,通過(guò)問(wèn)卷調(diào)查,整理數(shù)據(jù)得如下2×2列聯(lián)表:
40歲及以下 | 40歲以上 | 合計(jì) | |
基本滿意 | 15 | 30 | 45 |
很滿意 | 25 | 10 | 35 |
合計(jì) | 40 | 40 | 80 |
(1)根據(jù)列聯(lián)表,能否有99%的把握認(rèn)為滿意程度與年齡有關(guān)?
(2)為了幫助年齡在40歲以下的未購(gòu)房的8名員工解決實(shí)際困難,該企業(yè)擬員工貢獻(xiàn)積分(單位:分)給予相應(yīng)的住房補(bǔ)貼(單位:元),現(xiàn)有兩種補(bǔ)貼方案,方案甲:;方案乙:.已知這8名員工的貢獻(xiàn)積分為2分,3分,6分,7分,7分,11分,12分,12分,將采用方案甲比采用方案乙獲得更多補(bǔ)貼的員工記為“類員工”.為了解員工對(duì)補(bǔ)貼方案的認(rèn)可度,現(xiàn)從這8名員工中隨機(jī)抽取4名進(jìn)行面談,求恰好抽到3名“類員工”的概率。
附:,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知長(zhǎng)方形中,,為的中點(diǎn). 將沿折起,使得平面平面.
(1)求證: .
(2)點(diǎn)是線段上的一動(dòng)點(diǎn),當(dāng)二面角大小為時(shí),試確定點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)恰好是橢圓的右焦點(diǎn).
(1)求實(shí)數(shù)的值及拋物線的準(zhǔn)線方程;
(2)過(guò)點(diǎn)任作兩條互相垂直的直線分別交拋物線于、和、點(diǎn),求兩條弦的弦長(zhǎng)之和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】汕頭某家電企業(yè)要將剛剛生產(chǎn)的100臺(tái)變頻空調(diào)送往市內(nèi)某商場(chǎng),現(xiàn)有4輛甲型貨車和8輛乙型貨車可供調(diào)配,每輛甲型貨車的運(yùn)輸費(fèi)用是400元,可裝空調(diào)20臺(tái),每輛乙型貨車的運(yùn)輸費(fèi)用是300元,可裝空調(diào)10臺(tái),若每輛車至多運(yùn)一次,則企業(yè)所花的最少運(yùn)費(fèi)為( )
A. 2000元B. 2200元C. 2400元D. 2800元
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方體ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,點(diǎn)P為DD1的中點(diǎn),點(diǎn)M為BB1的中點(diǎn).
(1)求證:PB1⊥平面PAC;
(2)求直線CM與平面PAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)F是拋物線C:y2=2px(p>0)的焦點(diǎn),點(diǎn)M(x0,1)在C上,且|MF|=.
(1)求p的值;
(2)若直線l經(jīng)過(guò)點(diǎn)Q(3,-1)且與C交于A,B(異于M)兩點(diǎn),證明:直線AM與直線BM的斜率之積為常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果底面是菱形的直棱柱(側(cè)棱與底面垂直的棱柱)的所有棱長(zhǎng)都相等,,E,M,N分別為的中點(diǎn),現(xiàn)有下列四個(gè)結(jié)論:①平面②③平面④異面真線與MN所成的角的余弦值為,其中正確結(jié)論的個(gè)數(shù)為( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知直線l的參數(shù)方程為:,為參數(shù)點(diǎn)的極坐標(biāo)為,曲線C的極坐標(biāo)方程為.
Ⅰ試將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并求曲線C的焦點(diǎn)在直角坐標(biāo)系下的坐標(biāo);
Ⅱ設(shè)直線l與曲線C相交于兩點(diǎn)A,B,點(diǎn)M為AB的中點(diǎn),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com