(本小題滿分12分)
已知點(diǎn),是平面上一動點(diǎn),且滿足,
(1)求點(diǎn)的軌跡對應(yīng)的方程;
(2)已知點(diǎn)在曲線上,過點(diǎn)作曲線的兩條弦,且的斜率為滿足,試判斷動直線是否過定點(diǎn),并證明你的結(jié)論.
(1)即為對應(yīng)的方程;(2)直線恒過定點(diǎn).
第一問是平面向量與解析幾何得結(jié)合,體現(xiàn)了向量運(yùn)算的工具作用。熟練向量的運(yùn)算對于解決這類問題很有幫助。第二問考查直線與圓錐曲線的位置關(guān)系,解題的思路一般是將直線方程代入曲線方程消去一個未知數(shù),然后利用韋達(dá)定理處理。
解:(1)由 可知 …………………………1分
設(shè),則,…………2分
代入得:
化簡得:即為對應(yīng)的方程,        …………………………5分
(2)將代入 …………………………6分
設(shè)直線的方程為:
代入得: …………………………7分

 …………………………8分



 …………………………10分
當(dāng)時代入得: 過定點(diǎn)
當(dāng)時代入得:,不合題意,舍去.
綜上可知直線恒過定點(diǎn).…………………………12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的方程為,則它的一個焦點(diǎn)到一條漸進(jìn)線的距離是(   )
A.2            B   4         C.        D.  12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓上的任意一點(diǎn)到它兩個焦點(diǎn)的距離之和為,且它的焦距為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線與橢圓交于不同兩點(diǎn),且線段的中點(diǎn)不在圓內(nèi),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在以點(diǎn)為圓心,為直徑的半圓中,,是半圓弧上一點(diǎn),,曲線是滿足為定值的動點(diǎn)的軌跡,且曲線過點(diǎn).

(Ⅰ)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線的方程;
(Ⅱ)設(shè)過點(diǎn)的直線l與曲線相交于不同的兩點(diǎn)、
若△的面積不小于,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知A,B的坐標(biāo)分別是,直線AM,BM相交于點(diǎn)M,且它們的斜率之和是2,則點(diǎn)M的軌跡方程是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為了加快經(jīng)濟(jì)的發(fā)展,某省選擇兩城市作為龍頭帶動周邊城市的發(fā)展,決定在兩城市的周邊修建城際輕軌,假設(shè)為一個單位距離,兩城市相距個單位距離,設(shè)城際輕軌所在的曲線為,使輕軌上的點(diǎn)到兩城市的距離之和為個單位距離,

(1)建立如圖的直角坐標(biāo)系,求城際輕軌所在曲線的方程;
(2)若要在曲線上建一個加油站與一個收費(fèi)站,使三點(diǎn)在一條直線上,并且個單位距離,求之間的距離有多少個單位距離?
(3)在兩城市之間有一條與所在直線成的筆直公路,直線與曲線交于兩點(diǎn),求四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓軸的正半軸相交于點(diǎn),兩點(diǎn)在圓上,在第一象限,在第二象限,的橫坐標(biāo)分別為,則劣弧所對圓 心角的余弦值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的左、右焦點(diǎn)分別為、, 過焦點(diǎn)F1的直線交橢圓于兩點(diǎn),若的內(nèi)切圓的面積為,,兩點(diǎn)的坐標(biāo)分別為,則的值為___________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓與雙曲線有相同的焦點(diǎn),是兩曲線的一個交點(diǎn),則 等于    (    )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案