P為圓A:上的動點,點.線段PB的垂直平分線與半徑PA相交于點M,記點M的軌跡為Γ.
(1)求曲線Γ的方程;
(2)當(dāng)點P在第一象限,且時,求點M的坐標(biāo).
(1);(2).
解析試題分析:本題主要考查橢圓的定義和標(biāo)準(zhǔn)方程、圓的方程、直線的方程、直線與曲線的位置關(guān)系等基礎(chǔ)知識,同時考查解析幾何的基本思想方法和運算求解能力. 第一問,根據(jù)圓的方程得到圓心A的坐標(biāo)和半徑的長,利用垂直平分線得到,而,所以,根據(jù)橢圓的定義,判斷點M的軌跡為橢圓,得到橢圓的標(biāo)準(zhǔn)方程;根據(jù)已知條件先得出P點坐標(biāo),從而得到直線AP的方程,利用直線與橢圓相交解出M點坐標(biāo),過程中應(yīng)注意方程根的取舍.
試題解析:(1)圓的圓心為,半徑等于.
由已知,于是,
故曲線Γ是以為焦點,以為長軸長的橢圓,,
曲線Γ的方程為. 5分
(2)由,,得. 8分
于是直線方程為.
由解得,,.
由于點在線段上,所以點坐標(biāo)為. 12分
考點:1.橢圓的定義及標(biāo)準(zhǔn)方程;2.直線與橢圓的位置關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定點F(0,1)和直線l1:y=-1,過定點F與直線l1相切的動圓圓心為點C.
(1)求動點C的軌跡方程;
(2)過點F的直線l2交軌跡于兩點P、Q,交直線l1于點R,求·的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
是否同時存在滿足下列條件的雙曲線,若存在,求出其方程,若不存在,說明理由.
(1)焦點在軸上的雙曲線漸近線方程為;
(2)點到雙曲線上動點的距離最小值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓的中心為原點O,長軸在x軸上,離心率e=,過左焦點F1作x軸的垂線交橢圓于A、A′兩點,=4.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)取平行于y軸的直線與橢圓相交于不同的兩點P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點均在圓Q外.求△PP′Q的面積S的最大值,并寫出對應(yīng)的圓Q的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,設(shè)橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1、F2,線段OF1、OF2的中點分別為B1、B2,且△AB1B2是面積為4的直角三角形.
(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(2)過B1作直線交橢圓于P、Q兩點,使PB2⊥QB2,求△PB2Q的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓+=1(a>b>0)的左,右焦點分別為F1,F2,點P(a,b)滿足|PF2|=|F1F2|.
(1)求橢圓的離心率e;
(2)設(shè)直線PF2與橢圓相交于A,B兩點.若直線PF2與圓(x+1)2+(y-)2=16相交于M,N兩點,且|MN|=|AB|,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)A,B分別是直線y=x和y=-x上的動點,且|AB|=,設(shè)O為坐標(biāo)原點,動點P滿足=+.
(1)求點P的軌跡方程;
(2)過點(,0)作兩條互相垂直的直線l1,l2,直線l1,l2與點P的軌跡的相交弦分別為CD,EF,設(shè)CD,EF的弦中點分別為M,N,求證:直線MN恒過一個定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com