已知定點F(0,1)和直線l1:y=-1,過定點F與直線l1相切的動圓圓心為點C.
(1)求動點C的軌跡方程;
(2)過點F的直線l2交軌跡于兩點P、Q,交直線l1于點R,求·的最小值.
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓:的離心率為,其長軸長與短軸長的和等于6.
(1)求橢圓的方程;
(2)如圖,設橢圓的上、下頂點分別為,是橢圓上異于的任意一點,直線分別交軸于點,若直線與過點的圓相切,切點為.證明:線段的長為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知曲線E:ax2+by2=1(a>0,b>0),經(jīng)過點M的直線l與曲線E交于點A、B,且=-2.
(1)若點B的坐標為(0,2),求曲線E的方程;
(2)若a=b=1,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系xOy中,拋物線C的頂點在原點,經(jīng)過點A(2,2),其焦點F在x軸上.
(1)求拋物線C的標準方程;
(2)求過點F,且與直線OA垂直的直線的方程;
(3)設過點M(m,0)(m>0)的直線交拋物線C于D、E兩點,ME=2DM,記D和E兩點間的距離為f(m),求f(m)關于m的表達式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知,直線,為平面上的動點,過點作的垂線,垂足為點,且.
(1)求動點的軌跡曲線的方程;
(2)設動直線與曲線相切于點,且與直線相交于點,試探究:在坐標平面內是否存在一個定點,使得以為直徑的圓恒過此定點?若存在,求出定點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的中心為坐標原點O,橢圓短半軸長為1,動點M(2,t)(t>0)在直線x=(a為長半軸,c為半焦距)上.
(1)求橢圓的標準方程;
(2)求以OM為直徑且被直線3x-4y-5=0截得的弦長為2的圓的方程;
(3)設F是橢圓的右焦點,過點F作OM的垂線與以OM為直徑的圓交于點N,求證:線段ON的長為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓=1(a>b>0)的離心率為,且過點P,A為上頂點,F(xiàn)為右焦點.點Q(0,t)是線段OA(除端點外)上的一個動點,過Q作平行于x軸的直線交直線AP于點M,以QM為直徑的圓的圓心為N.
(1)求橢圓方程;
(2)若圓N與x軸相切,求圓N的方程;
(3)設點R為圓N上的動點,點R到直線PF的最大距離為d,求d的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
P為圓A:上的動點,點.線段PB的垂直平分線與半徑PA相交于點M,記點M的軌跡為Γ.
(1)求曲線Γ的方程;
(2)當點P在第一象限,且時,求點M的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com