【題目】已知圓C:,直線(xiàn)l過(guò)定點(diǎn)

(1)若直線(xiàn)l與圓C相切,求直線(xiàn)l的方程;

(2)若直線(xiàn)l與圓C相交于P,Q兩點(diǎn),求的面積的最大值,并求此時(shí)直線(xiàn)l的方程.

【答案】(1)

【解析】

(1)通過(guò)直線(xiàn)的斜率存在與不存在兩種情況,利用直線(xiàn)的方程與圓C相切,圓心到直線(xiàn)的距離等于半徑即可求解直線(xiàn)的方程;

(2)設(shè)直線(xiàn)方程為,求出圓心到直線(xiàn)的距離、求得弦長(zhǎng),得到的面積的表達(dá)式,利用二次函數(shù)求出面積的最大值時(shí)的距離,然后求出直線(xiàn)的斜率,即可得到直線(xiàn)的方程.

(1)①若直線(xiàn)l1的斜率不存在,則直線(xiàn)l1:x=1,符合題意.

②若直線(xiàn)l1斜率存在,設(shè)直線(xiàn)l1的方程為,即

由題意知,圓心(3,4)到已知直線(xiàn)l1的距離等于半徑2,即: ,解之得 . 所求直線(xiàn)l1的方程是.

(2)直線(xiàn)與圓相交,斜率必定存在,且不為0, 設(shè)直線(xiàn)方程為

則圓心到直線(xiàn)l1的距離

又∵△CPQ的面積

∴當(dāng)d=時(shí),S取得最大值2.

∴ k=1 或k=7

所求直線(xiàn)l1方程為 x-y-1=0或7x-y-7=0 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在貫徹中共中央、國(guó)務(wù)院關(guān)于精準(zhǔn)扶貧政策的過(guò)程中,某單位在某市定點(diǎn)幫扶某村戶(hù)貧困戶(hù).為了做到精準(zhǔn)幫扶,工作組對(duì)這戶(hù)村民的年收入情況、危舊房情況、患病情況等進(jìn)行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶(hù)的貧困指標(biāo).將指標(biāo)按照,,,分成五組,得到如圖所示的頻率分布直方圖.規(guī)定若,則認(rèn)定該戶(hù)為絕對(duì)貧困戶(hù),否則認(rèn)定該戶(hù)為相對(duì)貧困戶(hù);當(dāng)時(shí),認(rèn)定該戶(hù)為亟待幫住戶(hù)”.工作組又對(duì)這戶(hù)家庭的受教育水平進(jìn)行評(píng)測(cè),家庭受教育水平記為良好不好兩種.

1)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為絕對(duì)貧困戶(hù)數(shù)與受教育水平不好有關(guān):

受教育水平良好

受教育水平不好

總計(jì)

絕對(duì)貧困戶(hù)

相對(duì)貧困戶(hù)

總計(jì)

2)上級(jí)部門(mén)為了調(diào)查這個(gè)村的特困戶(hù)分布情況,在貧困指標(biāo)處于的貧困戶(hù)中,隨機(jī)選取兩戶(hù),用表示所選兩戶(hù)中亟待幫助戶(hù)的戶(hù)數(shù),求的分布列和數(shù)學(xué)期望.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于定義在區(qū)間上的函數(shù),若任給,均有,則稱(chēng)函數(shù)在區(qū)間上是封閉.

1)試判斷在區(qū)間上是否封閉,并說(shuō)明理由;

2)若函數(shù)在區(qū)間上封閉,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若在區(qū)間上不是單調(diào)函數(shù),求實(shí)數(shù)的范圍;

(2)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍;

(3)當(dāng)時(shí),設(shè),對(duì)任意給定的正實(shí)數(shù),曲線(xiàn)上是否存在兩點(diǎn),,使得是以為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,而且此三角形斜邊中點(diǎn)在軸上?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),.

1)求函數(shù)的極值;

2)對(duì)任意,都有,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),,則下列說(shuō)法正確的有(

A.不等式的解集為;

B.函數(shù)單調(diào)遞增,在單調(diào)遞減;

C.當(dāng)時(shí),總有恒成立;

D.若函數(shù)有兩個(gè)極值點(diǎn),則實(shí)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C經(jīng)過(guò)點(diǎn),離心率,直線(xiàn)的方程為

(1)求橢圓的方程;

(2)經(jīng)過(guò)橢圓右焦點(diǎn)的任一直線(xiàn)(不經(jīng)過(guò)點(diǎn))與橢圓交于兩點(diǎn),,設(shè)直線(xiàn)相交于點(diǎn),記的斜率分別為,問(wèn):是否為定值,若是,求出此定值,若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年,國(guó)家逐步推行全新的高考制度.新高考不再分文理科,某省采用3+3模式,其中語(yǔ)文、數(shù)學(xué)、外語(yǔ)三科為必考科目,滿(mǎn)分各150分,另外考生還要依據(jù)想考取的高校及專(zhuān)業(yè)的要求,結(jié)合自己的興趣愛(ài)好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門(mén)科目中自選3門(mén)參加考試(63),每科目滿(mǎn)分100分為了應(yīng)對(duì)新高考,某高中從高一年級(jí)1000名學(xué)生(其中男生550人,女姓450人)中,采用分層抽樣的方法從中抽取名學(xué)生進(jìn)行調(diào)查.

1)己知抽取的名學(xué)生中含男生55人,求的值;

2)學(xué)校計(jì)劃在高一上學(xué)期開(kāi)設(shè)選修中的“物理”和“地理”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的名學(xué)生進(jìn)行問(wèn)卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目),下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有99%的把握認(rèn)為選擇科目與性別有關(guān)?說(shuō)明你的理由;

選擇“物理”

選擇“地理”

總計(jì)

男生

10

女生

25

總計(jì)

附:,.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】哈市某公司為了了解用戶(hù)對(duì)其產(chǎn)品的滿(mǎn)意度,從南崗區(qū)隨機(jī)調(diào)查了40個(gè)用戶(hù),根據(jù)用戶(hù)對(duì)其產(chǎn)品的滿(mǎn)意度的評(píng)分,得到用戶(hù)滿(mǎn)意度評(píng)分的頻率分布表.

滿(mǎn)意度評(píng)分分組

頻數(shù)

2

8

14

10

6

1)在答題卡上作出南崗區(qū)用戶(hù)滿(mǎn)意度評(píng)分的頻率分布直方圖;

南崗區(qū)用戶(hù)滿(mǎn)意度評(píng)分的頻率分布直方圖

2)根據(jù)用戶(hù)滿(mǎn)意度評(píng)分,將用戶(hù)的滿(mǎn)意度評(píng)分分為三個(gè)等級(jí):

滿(mǎn)意度評(píng)分

低于70

70分到89

不低于90

滿(mǎn)意度等級(jí)

不滿(mǎn)意

滿(mǎn)意

非常滿(mǎn)意

估計(jì)南崗區(qū)用戶(hù)的滿(mǎn)意度等級(jí)為不滿(mǎn)意的概率;

3)求該公司滿(mǎn)意度評(píng)分的中位數(shù)(保留小數(shù)點(diǎn)后兩位).

查看答案和解析>>

同步練習(xí)冊(cè)答案