已知a>0,解關(guān)于x的不等式x2-(a+
1
a
)x+1<0.
考點(diǎn):二次函數(shù)的性質(zhì)
專(zhuān)題:不等式的解法及應(yīng)用
分析:對(duì)a大于1,小于1,以及等于1進(jìn)行分類(lèi)討論,分別解一元二次不等式.
解答: 解:①當(dāng)a=1時(shí),
不等式變?yōu)閤2-2x+1<0,解集為∅,
②當(dāng)a>1時(shí),a>
1
a
,
x2-(a+
1
a
)x+1<0等價(jià)于(x-a)(x-
1
a
)<0,解得
1
a
<x<a,
③當(dāng)0<a<1時(shí),a<
1
a
,x2-(a+
1
a
)x+1<0等價(jià)于(x-a)(x-
1
a
)<0,
解得a<x<
1
a
點(diǎn)評(píng):本題主要考查了一元二次不等式的解法,分類(lèi)討論思想的運(yùn)用.考查了學(xué)生計(jì)算能力和思維的嚴(yán)謹(jǐn)性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x3+ax在(-1,0)上是增函數(shù).
(1)求實(shí)數(shù)a的取值范圍A;
(2)當(dāng)a為A中最小值時(shí),定義數(shù)列{an}滿(mǎn)足:a1∈(-1,0),且2an+1=f(an),用數(shù)學(xué)歸納法證明an∈(-1,0),并判斷an+1與an的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了解初三學(xué)生女生身高情況,某中學(xué)對(duì)初三女生身高進(jìn)行了一次抽樣調(diào)查,根據(jù)所得數(shù)據(jù)整理后列出了頻率分布表如下:
組 別 頻數(shù) 頻率
145.5~149.5 1 0.02
149.5~153.5 4 0.08
153.5~157.5 22 0.44
157.5~161.5 13 0.26
161.5~165.5 8 0.16
165.5~169.5 m n
合 計(jì) M N
(1)求出表中m,n,M,N所表示的數(shù)分別是多少?
(2)畫(huà)頻率分布直方圖;
(3)若要從中再用分層抽樣方法抽出10人作進(jìn)一步調(diào)查,則身高在[153.5,161.5)范圍內(nèi)的應(yīng)抽出多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin
1
2
x+2
3
cos
1
2
x.
(1)求函數(shù)f(x)的最小正周期及值域;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
2x+
2

(Ⅰ)計(jì)算f(
1
2
+x)+f(
1
2
-x)的值
(Ⅱ)若關(guān)于x的不等式:f[23x-2-x+m(2x-2-x)+
1
2
]<
2
2
在區(qū)間[1,2]上有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α是第四象限角,且sinα=-
5
13
,則tanα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

利用數(shù)學(xué)歸納法證明不等式1+
1
2
+
1
3
+…+
1
2n-1
<f(n)(n≥2,n∈N*)的過(guò)程中,由n=k變到n=k+1時(shí),左邊增加的項(xiàng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線(xiàn)
x2
16
-
y2
9
=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,在左支上過(guò)點(diǎn)F1的弦AB的長(zhǎng)為5,那么△ABF2的周長(zhǎng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=2(cosα,sinα),
b
=2(cosβ,sinβ),
a
-
b
=(
3
,1)則cos2(α-β)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案