【題目】如圖所示,將方格紙中每個小方格染三種顏色之一,使得每種顏色的小方格的個數(shù)相等.若相鄰兩個小方格的顏色不同,稱他們的公共邊為“分割邊”,則分割邊條數(shù)的最小值為( )
A.33B.56C.64D.78
【答案】B
【解析】
記分隔邊的條數(shù)為,首先將方格按照按圖分三個區(qū)域,分別染成三種顏色,粗線上均為分隔邊,將方格的行從上至下依次記為,列從左至右依次記為,行中方格出現(xiàn)的顏色數(shù)記為,列中方格出現(xiàn)的顏色個數(shù)記為,三種顏色分別記為,對于一種顏色,設(shè)為含有色方格的行數(shù)與列數(shù)之和,定義當(dāng)行含有色方格時,,否則,類似的定義,計(jì)算得到,再證明,再證明對任意均有,最后求出分隔邊條數(shù)的最小值.
記分隔邊的條數(shù)為,首先將方格按照按圖分三個區(qū)域,分別染成三種顏色,粗線上均為分隔邊,
此時共有56條分隔邊,即,
其次證明:,
將將方格的行從上至下依次記為,列從左至右依次記為,行中方格出現(xiàn)的顏色數(shù)記為,列中方格出現(xiàn)的顏色個數(shù)記為,三種顏色分別記為,對于一種顏色,設(shè)為含有色方格的行數(shù)與列數(shù)之和,定義當(dāng)行含有色方格時,,否則,類似的定義,
所以,
由于染色的格有個,設(shè)含有色方格的行有個,列有個,則色的方格一定再這個行和列的交叉方格中,
從而,
所以①,
由于在行中有種顏色的方格,于是至少有條分隔邊,
類似的,在列中有種顏色的方格,于是至少有條分隔邊,
則②
③
下面分兩種情形討論,
(1)有一行或一列所有方格同色,
不妨設(shè)有一行均為色,則方格的33列均含有的方格,又色的方格有363個,故至少有11行有色方格,于是④
由①③④得
,
(2)沒有一行也沒有一列的所有方格同色,
則對任意均有,
從而,由式②知:
,
綜上,分隔邊條數(shù)的最小值為56.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>且滿足,當(dāng)時,.
(1)判斷在上的單調(diào)性并加以證明;
(2)若方程有實(shí)數(shù)根,則稱為函數(shù)的一個不動點(diǎn),設(shè)正數(shù)為函數(shù)的一個不動點(diǎn),且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,以正四棱錐VABCD的底面中心O為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系Oxyz,其中Ox∥BC,Oy∥AB,E為VC的中點(diǎn).正四棱錐的底面邊長為2a,高為h,且有cos〈,〉=-.
(1)求的值;
(2)求二面角B-VC-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線:的焦距為,直線()與交于兩個不同的點(diǎn)、,且時直線與的兩條漸近線所圍成的三角形恰為等邊三角形.
(1)求雙曲線的方程;
(2)若坐標(biāo)原點(diǎn)在以線段為直徑的圓的內(nèi)部,求實(shí)數(shù)的取值范圍;
(3)設(shè)、分別是的左、右兩頂點(diǎn),線段的垂直平分線交直線于點(diǎn),交直線于點(diǎn),求證:線段在軸上的射影長為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】A地的天氣預(yù)報(bào)顯示,A地在今后的三天中,每一天有強(qiáng)濃霧的概率為,現(xiàn)用隨機(jī)模擬的方法估計(jì)這三天中至少有兩天有強(qiáng)濃霧的概率,先利用計(jì)算器產(chǎn)生之間整數(shù)值的隨機(jī)數(shù),并用0,1,2,3,4,5,6表示沒有強(qiáng)濃霧,用7,8,9表示有強(qiáng)濃霧,再以每3個隨機(jī)數(shù)作為一組,代表三天的天氣情況,產(chǎn)生了如下20組隨機(jī)數(shù):
402 978 191 925 273 842 812 479 569 683
231 357 394 027 506 588 730 113 537 779
則這三天中至少有兩天有強(qiáng)濃霧的概率近似為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知首項(xiàng)為的數(shù)列各項(xiàng)均為正數(shù),且,.
(1)若數(shù)列的通項(xiàng)滿足,且,求數(shù)列的前n項(xiàng)和為;
(2)若數(shù)列的通項(xiàng)滿足,前n項(xiàng)和為,當(dāng)數(shù)列是等差數(shù)列時,對任意的,均存在,使得成立,求滿足條件的所有整數(shù)構(gòu)成的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四面體有五條棱長為3,且外接球半徑為2.動點(diǎn)P在四面體的內(nèi)部或表面,P到四個面的距離之和記為s.已知動點(diǎn)P在,兩處時,s分別取得最小值和最大值,則線段長度的最小值為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定整數(shù)(),設(shè)集合,記集合.
(1)若,求集合;
(2)若構(gòu)成以為首項(xiàng),()為公差的等差數(shù)列,求證:集合中的元素個數(shù)為;
(3)若構(gòu)成以為首項(xiàng),為公比的等比數(shù)列,求集合中元素的個數(shù)及所有元素之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),,若存在,使,則稱,是函數(shù)與的一對“雷點(diǎn)”.已知,,若函數(shù)與恰有一個“雷點(diǎn)”,則實(shí)數(shù)的取值范圍為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com