【題目】已知直線l的方程為3x+4y-12=0,求滿足下列條件的直線l的方程:

(1)過(guò)點(diǎn)(-1,3),且與l平行的直線方程為________

(2)過(guò)點(diǎn)(-1,3),且與l垂直的直線方程為__________

【答案】 . .

【解析】

(1)ll1,設(shè)方程為3x+4y+c=0,直線l過(guò)點(diǎn)(﹣1,3),可得﹣3+12+c=0,求出c,即可求出直線l的方程;

(2)ll1,設(shè)方程為4x﹣3y+m=0,直線l過(guò)點(diǎn)(﹣1,3),可得﹣4﹣9+m=0,求出m,即可求出直線l的方程

(1)ll1,設(shè)方程為3x+4y+c=0,直線l過(guò)點(diǎn)(﹣1,3),可得﹣3+12+c=0,c=﹣9,

∴直線l的方程為3x+4y﹣9=0;

(2)ll1,設(shè)方程為4x﹣3y+m=0,直線l過(guò)點(diǎn)(﹣1,3),可得﹣4﹣9+m=0,m=13,

∴直線l的方程為4x﹣3y+13=0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年3月山東省高考改革實(shí)施方案發(fā)布:2020年夏季高考開始全省高考考生總成績(jī)將由語(yǔ)文、數(shù)學(xué)、外語(yǔ)三門統(tǒng)一高考成績(jī)和學(xué)生自主選擇的普通高中學(xué)業(yè)水平等級(jí)性考試科目的成績(jī)共同構(gòu)成.省教育廳為了解正就讀高中的學(xué)生家長(zhǎng)對(duì)高考改革方案所持的贊成態(tài)度,隨機(jī)從中抽取了100名城鄉(xiāng)家長(zhǎng)作為樣本進(jìn)行調(diào)查,調(diào)查結(jié)果顯示樣本中有25人持不贊成意見(jiàn).右面是根據(jù)樣本的調(diào)查結(jié)果繪制的等高條形圖.

(Ⅰ)請(qǐng)根據(jù)已知條件與等高條形圖完成下面的列聯(lián)表:

贊成

不贊成

合計(jì)

城鎮(zhèn)居民

農(nóng)村居民

合計(jì)

(Ⅱ)試判斷我們是否有95%的把握認(rèn)為“贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”?.

【附】,其中.

0.150

0.100

0.050

0.005

0.001

2.072

2.706

3.841

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合,則滿足的取值范圍是()

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為調(diào)查高中生選修課的選修傾向與性別關(guān)系,隨機(jī)抽取50名學(xué)生,得到如表的數(shù)據(jù)表:

傾向“平面幾何選講”

傾向“坐標(biāo)系與參數(shù)方程”

傾向“不等式選講”

合計(jì)

男生

16

4

6

26

女生

4

8

12

24

合計(jì)

20

12

18

50


(1)根據(jù)表中提供的數(shù)據(jù),選擇可直觀判斷“選課傾向與性別有關(guān)系”的兩種,作為選課傾向的變量的取值,并分析哪兩種選擇傾向與性別有關(guān)系的把握大;
附:K2=

P(k2≤k0

0.100

0.050

0.010

0.005

0.001

k0

2.706

3.841

6.635

7.879

10.828


(2)在抽取的50名學(xué)生中,按照分層抽樣的方法,從傾向“平面幾何選講”與傾向“坐標(biāo)系與參數(shù)方程”的學(xué)生中抽取8人進(jìn)行問(wèn)卷.若從這8人中任選3人,記傾向“平面幾何選講”的人數(shù)減去與傾向“坐標(biāo)系與參數(shù)方程”的人數(shù)的差為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正三棱柱ABC-A1B1C1的所有棱長(zhǎng)都為2,DCC1中點(diǎn).

(1)求證:AB1⊥平面A1BD;

(2)求銳二面角A-A1D-B的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且在[﹣3,﹣2]上是減函數(shù),若α,β是銳角三角形的兩個(gè)內(nèi)角,則(
A.f(sinα)>f(sinβ)
B.f(sinα)<f(cosβ)
C.f(cosα)<f(cosβ)
D.f(sinα)>f(cosβ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的偶函數(shù)f(x)滿足f(x+2)f(x)=1對(duì)于x∈R恒成立,且f(x)>0,則f(2015)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校共有15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí))

(1)應(yīng)收集多少位女生樣本數(shù)據(jù)?

(2)根據(jù)這300個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:.估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4個(gè)小時(shí)的概率.

(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4個(gè)小時(shí).請(qǐng)完成每周平均體育運(yùn)動(dòng)時(shí)間與性別的列聯(lián)表,并判斷是否有的把握認(rèn)為該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān).

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= (a,b∈R,且a≠0,e為自然對(duì)數(shù)的底數(shù)).
(1)若曲線f(x)在點(diǎn)(e,f(e))處的切線斜率為0,且f(x)有極小值,求實(shí)數(shù)a的取值范圍.
(2)①當(dāng) a=b=l 時(shí),證明:xf(x)+2<0; ②當(dāng) a=1,b=﹣1 時(shí),若不等式:xf(x)>e+m(x﹣1)在區(qū)間(1,+∞)內(nèi)恒成立,求實(shí)數(shù)m的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案