已知橢圓的兩個焦點為,點在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點,設點是橢圓上任一點,求的取值范圍.

(1)(2)

解析試題分析:解:(1)設橢圓的方程為   1分
由橢圓定義,   3分
  .    5分
故所求的橢圓方程為.     6分
(2)設     7分
   9分
∵點在橢圓上,∴    10

      12分
有最小值;有最大值
,∴的范圍是     14分
考點:直線與橢圓的位置關系
點評:主要是考查了直線與橢圓的位置關系,以及向量的數(shù)量積的運用,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知點是直角坐標平面內的動點,點到直線(是正常數(shù))的距離為,到點的距離為,且1.
(1)求動點P所在曲線C的方程;
(2)直線過點F且與曲線C交于不同兩點A、B,分別過A、B點作直線的垂線,對應的垂足分別為,求證=;
(3)記,,
(A、B、是(2)中的點),,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,設是圓上的動點,點軸上投影,上一點,且.當在圓上運動時,點的軌跡為曲線. 過點且傾斜角為的直線交曲線兩點.
(1)求曲線的方程;
(2)若點F是曲線的右焦點且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓E:)離心率為,上頂點M,右頂點N,直線MN與圓相切,斜率為k的直線l經(jīng)過橢圓E在正半軸的焦點F,且交E于A、B不同兩點.
(1)求E的方程;
(2)若點G(m,0)且| GA|=| GB|,,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,點到兩點,的距離之和為,設點的軌跡為曲線.
(1)寫出的方程;
(2)設過點的斜率為)的直線與曲線交于不同的兩點,,點軸上,且,求點縱坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知圓C與y軸相切于點T(0,2),與x軸正半軸相交于兩點M,N  (點M在點N的右側),且。橢圓D:的焦距等于,且過點

( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過點M的動直線與橢圓D交于A、B兩點,若點N在以弦AB為直徑的圓的外部,求直線斜率的范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線,直線交拋物線于兩點,且

(1)求拋物線的方程;
(2)若點是拋物線上的動點,過點的拋物線的切線與直線交于點,問在軸上是否存在定點,使得?若存在,求出該定點,并求出的面積的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


已知橢圓C:其左、右焦點分別為F1、F2,點P是坐標平面內一點,且|OP|=(O為坐標原點)。
(1)求橢圓C的方程;
(2)過點l交橢圓于A、B兩點,在y軸上是否存在定點M,使以AB為直徑的圓恒過這個點:若存在,求出M的坐標;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設橢圓的離心率為,點,原點到直線的距離為
(1)求橢圓的方程;
(2)設點,點在橢圓上(與均不重合),點在直線上,若直線的方程為,且,試求直線的方程.

查看答案和解析>>

同步練習冊答案