【題目】設(shè)二次函數(shù)(,),關(guān)于的不等式的解集中有且只有一個(gè)元素.
(1)設(shè)數(shù)列的前項(xiàng)和(),求數(shù)列的通項(xiàng)公式;
(2)設(shè)(),則數(shù)列中是否存在不同的三項(xiàng)能組成等比數(shù)列?請說明理由.
【答案】(1) ,(2)見解析
【解析】
(1)由等式的解集中有且只有一個(gè)元素可利用判別式等于0算出,,有關(guān)通項(xiàng)與前項(xiàng)和的等式,一般先令,再利用,,推導(dǎo)的通項(xiàng)公式即可。
(2)求出的通項(xiàng)公式,利用等比數(shù)列的性質(zhì),建立等式即可分析得出結(jié)論。
(1)因?yàn)殛P(guān)于的不等式的解集中有且只有一個(gè)元素,
所以二次函數(shù)的圖象與軸相切,
于是,考慮到,所以.
從而,故數(shù)列的前項(xiàng)和.
于是;
當(dāng)時(shí),.
故數(shù)列的通項(xiàng)公式為.
(2).
假設(shè)數(shù)列中存在三項(xiàng)(正整數(shù)互不相等)成等比數(shù)列,
則,即,
整理得.
因?yàn)?/span>都是正整數(shù),所以,
于是,即,從而與矛盾.
故數(shù)列中不存在不同三項(xiàng)能組成等比數(shù)列.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大衍數(shù)列,來源于《乾坤譜》中對易傳“大衍之?dāng)?shù)五十“的推論.主要用于解釋中國傳統(tǒng)文化中的太極衍生原理數(shù)列中的每一項(xiàng),都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和是中華傳統(tǒng)文化中隱藏著的世界數(shù)學(xué)史上第一道數(shù)列題其規(guī)律是:偶數(shù)項(xiàng)是序號平方再除以2,奇數(shù)項(xiàng)是序號平方減1再除以2,其前10項(xiàng)依次是0,2,4,8,12,18,24,32,40,50,…,如圖所示的程序框圖是為了得到大衍數(shù)列的前100項(xiàng)而設(shè)計(jì)的,那么在兩個(gè)判斷框中,可以先后填入( )
A. 是偶數(shù)?,? B. 是奇數(shù)?,?
C. 是偶數(shù)?, ? D. 是奇數(shù)?,?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=3-x,g(x)=log3(x+8).
(1)求f(1),g(1),f[g(1)],g[f(1)]的值;
(2)求f[g(x)],g[f(x)]的表達(dá)式并說明定義域;
(3)說明f[g(x)],g[f(x)]的單調(diào)性(不需要證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3000元時(shí),可全部租出,當(dāng)每輛車的月租金每增加50元時(shí),未租出的車將會增加一輛,租出的車每輛每月需維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元。
(1)當(dāng)每輛車的月租金定為3600元時(shí),能租出多少輛車?
(2)當(dāng)每輛車的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足:.
(1)若,求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前項(xiàng)和為,且試確定的值,使得數(shù)列為等差數(shù)列;
(3)將數(shù)列中的部分項(xiàng)按原來順序構(gòu)成新數(shù)列,且,求證:存在無數(shù)個(gè)滿足條件的無窮等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右焦點(diǎn)分別為,右頂點(diǎn)為,且過點(diǎn),圓是以線段為直徑的圓,經(jīng)過點(diǎn)且傾斜角為的直線與圓相切.
(1)求橢圓及圓的方程;
(2)是否存在直線,使得直線與圓相切,與橢圓交于兩點(diǎn),且滿足?若存在,請求出直線的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,平面平面, , , , 為中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在點(diǎn),使得?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com