【題目】已知各項為正的等比數(shù)列{an}的前n項和為Sn , S4=30,過點P(n,log2an)和Q(n+2,log2an+1)(n∈N*)的直線的一個方向向量為(﹣1,﹣1)
(1)求數(shù)列{an}的通項公式;
(2)設bn= ,數(shù)列{bn}的前n項和為Tn , 證明:對于任意n∈N* , 都有Tn

【答案】
(1)解:∵各項為正的等比數(shù)列{an}的前n項和為Sn,S4=30,

過點P(n,log2an)和Q(n+2,log2an+1)(n∈N*)的直線的一個方向向量為(﹣1,﹣1),

,

解得 ,q=4,

∴an=


(2)解:∵bn= = = ),

∴數(shù)列{bn}的前n項和:

Tn= + + +…+ +

=

= +

∴對于任意n∈N*,都有Tn


【解析】(1)利用等比數(shù)列前n項和公式及直線的方向向量性質列出方程組,由此能求出首項和公比,從而能求出數(shù)列{an}的通項公式.(2)由bn= = ),利用裂項法能證明對于任意n∈N* , 都有Tn
【考點精析】利用數(shù)列的前n項和和數(shù)列的通項公式對題目進行判斷即可得到答案,需要熟知數(shù)列{an}的前n項和sn與通項an的關系;如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=lnx﹣ ax2﹣bx,若x=1是f(x)的極大值點,則a的取值范圍為(
A.(﹣1,0)
B.(﹣1,+∞)
C.(0,+∞)
D.(﹣∞,﹣1)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導函數(shù),f(﹣1)=0,當x>0時,xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是(
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=|x﹣ |+|x+m|(m>0)
(1)證明:f(x)≥4;
(2)若f(2)>5,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,輸出的結果為1538,則判斷框內可填入的條件為(

A.n>6?
B.n>7?
C.n>8?
D.n>9?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,F(xiàn)是橢圓P: (a>b>0)的右焦點,已知A(0,﹣2)與橢圓左頂點關于直線y=x對稱,且直線AF的斜率為
(1)求橢圓P的方程;
(2)過點Q(﹣1,0)的直線l交橢圓P于M、N兩點,交直線x=﹣4于點E, = , = ,證明:λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】分)已知橢圓的左焦點為,過的直線交于、兩點.

)求橢圓的離心率.

)當直線軸垂直時,求線段的長.

)設線段的中點為為坐標原點,直線交橢圓交于兩點,是否存在直線使得?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,AC是弦,AD⊥CE,垂足為D,AC平分∠BAD.

(1)求證:直線CE是⊙O的切線;
(2)求證:AC2=ABAD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果執(zhí)行右邊的程序框圖,輸入正整數(shù)N(N≥2)和實數(shù)a1 , a2 , …,an , 輸出A,B,則(

A.A+B為a1 , a2 , …,an的和
B. 為a1 , a2 , …,an的算術平均數(shù)
C.A和B分別是a1 , a2 , …,an中最大的數(shù)和最小的數(shù)
D.A和B分別是a1 , a2 , …,an中最小的數(shù)和最大的數(shù)

查看答案和解析>>

同步練習冊答案