【題目】已知圓軸交于兩點,點為圓上異于的任意一點,圓在點處的切線與圓在點處的切線分別交于,直線交于點,設點的軌跡為曲線.

(1)求曲線的方程;

(2)曲線軸正半軸交點為,則曲線是否存在直角頂點為的內接等腰直角三角形,若存在,求出所有滿足條件的的兩條直角邊所在直線的方程,若不存在,請說明理由.

【答案】(1)(2)詳見解

【解析】試題分析:(1)設,則處的切線為,切線CD與AC,BD組方程組可求得C,D點坐標,再直線AD,BC組方程組,解點交點P軌跡方程。注意消參,需要用到點M在圓上。同時注意曲線方程變量范圍。(2)設,則, 與橢圓組方程組,可求得GH,同理求得,再利用進行分類討論。

試題解析:(Ⅰ)設,則處的切線為,

, ,則,則;

(Ⅱ)由于直線不與坐標軸平行或垂直,可設,則

,得,由于恒成立,設兩個根為,

,同理,

知: ,得:

(1)時,得得:

(2)時,得得:

綜上,共分三種情況

(1)兩條直角邊所在直線方程為:

(2)兩條直角邊所在直線方程為:

(3)兩條直角邊所在直線方程為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 是偶函數(shù),g(x)=t2x+4,
(1)求a的值;
(2)當t=﹣2時,求f(x)<g(x)的解集;
(3)若函數(shù)f(x)的圖象總在g(x)的圖象上方,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= (a、b為常數(shù)),且f(1)= ,f(0)=0.
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在定義域上的奇偶性,并證明;
(3)對于任意的x∈[0,2],f(x)(2x+1)<m4x恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C的參數(shù)方程是 (α為參數(shù)),直線l的參數(shù)方程為 (t為參數(shù)),
(1)求曲線C與直線l的普通方程;
(2)若直線l與曲線C相交于P,Q兩點,且|PQ|= ,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={x|y=log2(x﹣1)},B={y|y=﹣x2+2x﹣2,x∈R}
(1)求集合A,B;
(2)若集合C={x|2x+a<0},且滿足B∪C=C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=x2﹣2tx+2,其中 t∈R.
(1)若t=1,求函數(shù)f(x)在區(qū)間[0,4]上的取值范圍;
(2)若t=1,且對任意的x∈[a,a+2],都有f(x)<5,求實數(shù)a的取值范圍;
(3)若對任意的x1 , x2∈[0,4],都有f(x1)﹣f(x2)≤8,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:分子為1且分母為正整數(shù)的分數(shù)叫做單位分數(shù),我們可以把1拆分成多個不同的單位分數(shù)之和.例如:1= + + ,1= + + + ,1= + + + + ,…,依此拆分法可得1= + + + + + + + + + + + + + ,其中m,n∈N* , 則m﹣n=(
A.﹣2
B.﹣4
C.﹣6
D.﹣8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】集合A= ,若BA求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C1 (α為參數(shù))與曲線C2:ρ=4sinθ
(1)寫出曲線C1的普通方程和曲線C2的直角坐標方程;
(2)求曲線C1和C2公共弦的長度.

查看答案和解析>>

同步練習冊答案