【題目】已知向量 ,記函數(shù) .求:
(I)函數(shù) 的最小值及取得最小值時(shí) 的集合;
(II)求函數(shù)f(x) 的單調(diào)增區(qū)間。

【答案】解:由題意:

所以,

因此,

當(dāng) ,即 時(shí), 取得最小值.

此時(shí) 最小值=

(II)函數(shù) 的單調(diào)遞增區(qū)間.

解:由題意:

于是, 的單調(diào)遞增區(qū)間是


【解析】(1)故解集平面向量的坐標(biāo)運(yùn)算整理原式,再結(jié)合二倍角的余弦公式以及輔助角公式得到正弦型函數(shù),利用正弦型函數(shù)的最值情況得出當(dāng)f(x) 取得最小值和最大值時(shí)x的集合。(2)根據(jù)(1)的化簡結(jié)果利用正弦型函數(shù)的單調(diào)性整體思想代入求出x的取值范圍,再將其變成區(qū)間的形式。
【考點(diǎn)精析】關(guān)于本題考查的二倍角的余弦公式和正弦函數(shù)的單調(diào)性,需要了解二倍角的余弦公式:;正弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù)才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新課標(biāo)要求學(xué)生數(shù)學(xué)模塊學(xué)分認(rèn)定由模塊成績決定,模塊成績由模塊考試成績和平時(shí)成績構(gòu)成,各占50%,若模塊成績大于或等于60分,獲得2學(xué)分,否則不能獲得學(xué)分(為0分),設(shè)計(jì)一算法,通過考試成績和平時(shí)成績計(jì)算學(xué)分,并畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,數(shù)列{an}的前n項(xiàng)和為Sn , 且an=f( ),則S2017=(
A.1008
B.1010
C.
D.2019

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生身高情況,某校以 的比例對全校1000名學(xué)生按性別進(jìn)行分層抽樣調(diào)查,已知男女比例為 ,測得男生身高情況的頻率分布直方圖(如圖所示):

(1)計(jì)算所抽取的男生人數(shù),并估計(jì)男生身高的中位數(shù)(保留兩位小數(shù));
(2)從樣本中身高在 之間的男生中任選2人,求至少有1人身高在 之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明準(zhǔn)備利用暑假時(shí)間去旅游,媽媽為小明提供四個(gè)景點(diǎn),九寨溝、泰山、長白山、武夷山.小明決定用所學(xué)的數(shù)學(xué)知識制定一個(gè)方案來決定去哪個(gè)景點(diǎn):(如圖)曲線 和直線 交于點(diǎn) .以 為起點(diǎn),再從曲線 上任取兩個(gè)點(diǎn)分別為終點(diǎn)得到兩個(gè)向量,記這兩個(gè)向量的數(shù)量積為 .若 去九寨溝;若 去泰山;若 去長白山; 去武夷山.

(1)若從 這六個(gè)點(diǎn)中任取兩個(gè)點(diǎn)分別為終點(diǎn)得到兩個(gè)向量,分別求小明去九寨溝的概率和不去泰山的概率;
(2)按上述方案,小明在曲線 上取點(diǎn) 作為向量的終點(diǎn),則小明決定去武夷山.點(diǎn) 在曲線 上運(yùn)動(dòng),若點(diǎn) 的坐標(biāo)為 ,求 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 是定義在 上的偶函數(shù),對任意 ,都有 ,且當(dāng) 時(shí), .若 上有5個(gè)根 ,則 的值是( )
A.10
B.9
C.8
D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線x+y+m=0與圓x2+y2=4交于不同的兩點(diǎn)A,B,O是坐標(biāo)原點(diǎn), ,則實(shí)數(shù)m的取值范圍是(
A.[﹣2,2]
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,四邊形ACFE是矩形,且平面ACFE⊥平面ABCD,點(diǎn)M在線段EF上. (I)求證:BC⊥平面ACFE;
(II)當(dāng)EM為何值時(shí),AM∥平面BDF?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1中,給出以下結(jié)論: ①直線A1B與B1C所成的角為60°;
②若M是線段AC1上的動(dòng)點(diǎn),則直線CM與平面BC1D所成角的正弦值的取值范圍是 ;
③若P,Q是線段AC上的動(dòng)點(diǎn),且PQ=1,則四面體B1D1PQ的體積恒為
其中,正確結(jié)論的個(gè)數(shù)是(

A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)

查看答案和解析>>

同步練習(xí)冊答案