已知F1、F2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)與橢圓
x2
9
+
y2
5
=1的共同焦點(diǎn),若點(diǎn)P是兩曲線的一個(gè)交點(diǎn),且△PF1F2為等腰三角形,則該雙曲線的離心率為
 
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:先利用雙曲線雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)與橢圓
x2
9
+
y2
5
=1的共同焦點(diǎn),求得a2+b2=4,再利用點(diǎn)P是兩曲線的一個(gè)交點(diǎn),且△PF1F2為等腰三角形,求得交點(diǎn)坐標(biāo),從而可求雙曲線的標(biāo)準(zhǔn)方程,進(jìn)而可求雙曲線的離心率.
解答: 解:不妨設(shè)P是兩曲線在第一象限的交點(diǎn),P(x,y)
由題意,橢圓
x2
9
+
y2
5
=1的焦點(diǎn)為(±2,0)
∵雙曲線線
x2
a2
-
y2
b2
=1(a>0,b>0),與橢圓
x2
9
+
y2
5
=1的共同焦點(diǎn)
∴a2+b2=4①
∵點(diǎn)P是兩曲線的一個(gè)交點(diǎn),且△PF1F2為等腰三角形
∴|PF1|=|F1F2|=4
∵橢圓的左準(zhǔn)線方程為:x=-
a2
c
=-
9
2

4
x+
9
2
=
2
3

∴x=
3
2

∵P在橢圓
x2
9
+
y2
5
=1上
∴y2=
15
4

∵P在雙曲線
x2
a2
-
y2
b2
=1上
9
4
a2
-
15
4
b2
=1

由①②得:b2=3,a2=1,
∴c=2,
∴e=
c
a
=2.
故答案為:2.
點(diǎn)評(píng):本題以橢圓為載體,考查橢圓與雙曲線的幾何性質(zhì),考查橢圓的定義的運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=-x與直線y=k(x+1)交于兩點(diǎn)A,B.
(1)若△OAB的面積為
10
,求k的值;    
(2)已知O為原點(diǎn),證明OA⊥OB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,內(nèi)角∠A,∠B,∠C的對(duì)邊分別是a,b,c,acosB+bsinA=c,則∠A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且an=n,則數(shù)列{
1
Sn
}前15項(xiàng)的和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)及其導(dǎo)數(shù)f′(x),若存在x0,使得f(x0)=f′(x0),則稱x0是f(x)的一個(gè)“巧值點(diǎn)”,下列函數(shù)中,有“巧值點(diǎn)”的函數(shù)個(gè)數(shù)是
 
(只填數(shù)字)
①f(x)=x2
②f(x)=e-x
③f(x)=lnx
④f(x)=x+
1
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右兩個(gè)頂點(diǎn)分別是A1,A2,左右兩個(gè)焦點(diǎn)分別是F1,F(xiàn)2,P是雙曲線上異于A1,A2的任意一點(diǎn),則下列命題中真命題為
 

①|(zhì)|PA1|-|PA2||=2a;
②直線PA1,PA2的斜率之積等于定值
b2
a2

③使得△PF1F2為等腰三角形的點(diǎn)P有且僅有四個(gè);
④若
PA1
PA2
=b2,則
PF1
PF2
=0;
⑤由P點(diǎn)向兩條漸近線分別作垂線,垂足為M,N,則△PMN的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)0≤x≤2時(shí),函數(shù)y=4x-
1
2
-a•2x+
a2
2
+1
的最大值為3,則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

里氏震級(jí)M的計(jì)算公式為:M=lgA-lgA0,其中A是測(cè)震儀記錄的地震曲線的最大振幅,A0是相應(yīng)的標(biāo)準(zhǔn)地震的振幅,9級(jí)地震的最大振幅是5級(jí)地震最大振幅的
 
倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知和式S=
12+22+32+…+n2
n3
,當(dāng)n趨向于∞時(shí),S無(wú)限趨向于一個(gè)常數(shù)A,則A可用定積分表示為( 。
A、
1
0
1
x
dx
B、
1
0
x2dx
C、
1
0
1
x
2dx
D、
1
0
x
n
2dx

查看答案和解析>>

同步練習(xí)冊(cè)答案