已知等比數(shù)列的首項,公比,數(shù)列前項的積記為.
(1)求使得取得最大值時的值;
(2)證明中的任意相鄰三項按從小到大排列,總可以使其成等差數(shù)列,如果所有這些等差數(shù)列的公差按從小到大的順序依次設(shè)為,證明:數(shù)列為等比數(shù)列.
(參考數(shù)據(jù))
(1)n=12
(2)根據(jù)題意,由于對進(jìn)行調(diào)整,隨n增大而減小,奇數(shù)項均正,偶數(shù)項均負(fù),那么對于n分為奇數(shù)和偶數(shù)來討論得到證明。
解析試題分析:.解:
(1),,,,
則當(dāng)時,;當(dāng)時,,
,又
的最大值是中的較大者.,
,因此當(dāng)n=12時,最大 .6分
(2)對進(jìn)行調(diào)整,隨n增大而減小,奇數(shù)項均正,偶數(shù)項均負(fù).
①當(dāng)n是奇數(shù)時,調(diào)整為.則,,成等差數(shù)列;
②當(dāng)n是偶數(shù)時,調(diào)整為;則,,成等差數(shù)列;
綜上可知,中的任意相鄰三項按從小到大排列,總可以使其成等差數(shù)列.
①n是奇數(shù)時,公差;
②n是偶數(shù)時,公差.
無論n是奇數(shù)還是偶數(shù),都有,則,
因此,數(shù)列是首項為,公比為的等比數(shù)列, 12分
考點:數(shù)列的概念
點評:主要是考查了數(shù)列的概念的運用,以及分類討論思想的運用,屬于難度題。
科目:高中數(shù)學(xué) 來源: 題型:解答題
給定數(shù)列.對,該數(shù)列前項的最大值記為,后項的最小值記為,.
(Ⅰ)設(shè)數(shù)列為,,,,寫出,,的值;
(Ⅱ)設(shè)是公比大于的等比數(shù)列,且.證明:是等比數(shù)列.
(Ⅲ)設(shè)是公差大于的等差數(shù)列,且,證明:是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的各項均為正數(shù),為其前項和,對于任意的,滿足關(guān)系式
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列的通項公式是,前項和為,求證:對于任意的正整數(shù)n,總有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在各項均為正數(shù)的等比數(shù)列{an}中,已知a2 = 2,a5 = 16,求:
(1)a1與公比q的值;(2)數(shù)列前6項的和S6 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前n項和(n為正整數(shù)).
(1)令,求證數(shù)列是等差數(shù)列;
(2)求數(shù)列的通項公式;
(3)令,。是否存在最小的正整數(shù),使得對于都有恒成立,若存在,求出的值。不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中,,且對任意的都有.
(1)求證:是等比數(shù)列;
(2)若對任意的都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{}中
(I)設(shè),求證數(shù)列{}是等比數(shù)列;
(Ⅱ)求數(shù)列{}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
(1)求數(shù)列{}的通項公式
(2)數(shù)列{}的首項b1=1,前n項和為Tn,且,求數(shù)列{}
的通項公式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com