已知數(shù)列的各項(xiàng)均為正數(shù),為其前項(xiàng)和,對于任意的,滿足關(guān)系式
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的通項(xiàng)公式是,前項(xiàng)和為,求證:對于任意的正整數(shù)n,總有

(1)
(2)根據(jù)列項(xiàng)求和法來得到數(shù)列的前n項(xiàng)和 進(jìn)而證明。

解析試題分析:
解:(1)由已知得
, 即
故數(shù)列為等比數(shù)列,且
又當(dāng)時, 
亦適合上式  
(2)
所以
     
考點(diǎn):等比數(shù)列
點(diǎn)評:主要是考查了等比數(shù)列的通項(xiàng)公式和裂項(xiàng)法求和的綜合運(yùn)用,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列中,,對任意成立,令,且是等比數(shù)列.
(1)求實(shí)數(shù)的值;
(2)求數(shù)列的通項(xiàng)公式;
(3)求和:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)是數(shù)列的前項(xiàng)和,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等比數(shù)列中,,等差數(shù)列中,,且。
(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)為等差數(shù)列的前項(xiàng)和,,,求.
(2)在等比數(shù)列中,若求首項(xiàng)和公比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是各項(xiàng)為正數(shù)的等比數(shù)列,且a1=1,a2+a3=6,
(1)求該數(shù)列的通項(xiàng)公式
(2)若,求該數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等比數(shù)列的首項(xiàng),公比,數(shù)列項(xiàng)的積記為.
(1)求使得取得最大值時的值;
(2)證明中的任意相鄰三項(xiàng)按從小到大排列,總可以使其成等差數(shù)列,如果所有這些等差數(shù)列的公差按從小到大的順序依次設(shè)為,證明:數(shù)列為等比數(shù)列.
(參考數(shù)據(jù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是等比數(shù)列,且,
(1)求數(shù)列的通項(xiàng)公式
(2)令,求的前項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足:
(1)求證:數(shù)列為等比數(shù)列;
(2)求證:數(shù)列為遞增數(shù)列;
(3)若當(dāng)且僅當(dāng)的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案