【題目】已知i為虛數(shù)單位,a為實數(shù),復(fù)數(shù)z=1﹣2i)(a+i)在復(fù)平面內(nèi)對應(yīng)的點為M,則“”M在第四象限的( )

A.充分而不必要條件

B.必要而不充分條件

C.充要條件

D.既不充分也不必要條件

【答案】C

【解析】

試題這種問題需要從兩個方面入手,首先驗證當(dāng)時,復(fù)數(shù)對應(yīng)的點的橫坐標(biāo)大于零,縱坐標(biāo)小于零,得到點M在第四象限,再驗證當(dāng)點是第四象限的點時,a的值是前面條件所給的值,兩者能夠互相推出,得到結(jié)論.

解:復(fù)數(shù)z=1﹣2i)(a+i=a+i﹣2ai+2=a+2+1﹣2ai

當(dāng)時,a+20,1﹣2a0,

復(fù)數(shù)對應(yīng)的點的橫坐標(biāo)大于零,縱坐標(biāo)小于零,

M在第四象限,

前者是后者的充分條件,

當(dāng)點M在第四象限時,

a+20,1﹣2a0,

∴a﹣2,a,

,

前者是后者的必要條件,

總上可知前者是后者的充要條件,

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在“創(chuàng)文創(chuàng)衛(wèi)”活動中,某機構(gòu)為了解一小區(qū)成年居民“吸煙與性別”是否有關(guān).從該小區(qū)中隨機抽取200位成年居民,得到下邊列聯(lián)表:已知在全部200人中隨機抽取1人,抽到不吸煙的概率為0.75.

吸煙

不吸煙

合計

40

90

合計

200

(1)補充上面的列聯(lián)表,并判斷:能否有99.9%的把握認(rèn)為“吸煙與性別”有關(guān);

(2)用分層抽樣的方法從吸煙居民中選5人出來,然后再從中抽2人出來,給小區(qū)居民談?wù)勎鼰煹奈:π裕笄『贸榈健耙荒幸慌钡母怕?

參考公式: .

參考數(shù)據(jù):

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為,且乙投球2次均未命中的概率為.

)求乙投球的命中率;

)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖分別為定義域和值域均為的函數(shù)和函數(shù)的圖象,則下列命題正確的是(

A.函數(shù)恰有個零點B.函數(shù)恰有個零點

C.函數(shù)恰有個零點D.函數(shù)恰有個零點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)整數(shù)數(shù)列{an}共有2n)項,滿足,,且).

(1)當(dāng)時,寫出滿足條件的數(shù)列的個數(shù);

(2)當(dāng)時,求滿足條件的數(shù)列的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

1)求函數(shù)的單調(diào)區(qū)間;

2)當(dāng)時,對任意的,存在,使得成立,試確定實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)選修44,坐標(biāo)系與參數(shù)方程

已知曲線,直線為參數(shù)).

I)寫出曲線的參數(shù)方程,直線的普通方程;

II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】程大位是明代著名數(shù)學(xué)家,他的《新編直指算法統(tǒng)宗》是中國歷史上一部影響巨大的著作.卷八中第33問:“今有三角果一垛,底闊每面七個.問該若干?”如圖是解決該問題的程序框圖.執(zhí)行該程序框圖,求得該垛果子的總數(shù)S為( )

A.28B.56C.84D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)解關(guān)于的不等式;

2)若對于任意恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案