設(shè)A={a+
2
b||a2-2b2|=1,a,b∈Z},現(xiàn)有以下三個(gè)條件:
甲:x∈A且y∈A
乙:xy∈A
丙:
1
x
∈A
求證:甲分別是乙和丙的充分條件.
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡(jiǎn)易邏輯
分析:根據(jù)元素之間的關(guān)系,利用充分條件的定義進(jìn)行推理即可.
解答: 解:設(shè)x=a+
2
b,y=c+
2
d,則|a2-2b2|=1,a,b∈Z,|c2-2d2|=1,c,d∈Z
則xy=(a+
2
b)(c+
2
d)=(ac+2bd)+
2
(bc+ad),
∵(ac+2bd)2-2(bc+ad)2=(a2-2b2)(c2-2d2),a,b,c,d∈Z,
∴|(ac+2bd)2-2(bc+ad)2|=|(a2-2b2)(c2-2d2)|=1,a,b,c,d∈Z,
即xy∈A,
1
x
=
1
a+
2
b
=
a-
2
b
a2-2b2
=
a
a2-2b2
-
2
•(
b
a2-2b2
)
,
∵|a2-2b2|=1,
∴若a2-2b2=1,則
1
x
=a-
2
b∈A

若a2-2b2=-1,則
1
x
=-a+
2
b∈A
,
∴甲分別是乙和丙的充分條件.
點(diǎn)評(píng):本題主要考查充分條件和必要條件的判斷,根據(jù)集合元素關(guān)系進(jìn)行推理是解決本題的關(guān)鍵,綜合性較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
b
a
a2-x2
的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

稱子集A⊆M={1,2,3,4,5,6,7,8,9,10,11}是“好子集“,它有下述性質(zhì):若2k∈A,則2k-1∈A且2k+1∈A,(k∈Z)(空集是好子集),問:M中有多少個(gè)包含有2個(gè)偶數(shù)的好子集?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用向量法證明:梯形的中位線平行于兩底邊且等于兩底邊和的一半.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓P的圓心在x軸,且過點(diǎn)A(0,5)、B(3,4).
(1)求圓P的方程;
(2)證明:過點(diǎn)A任意作兩條傾斜角互補(bǔ)的直線,分別交圓P于E、F兩點(diǎn)(E、F不重合),則直線EF的斜率為定值,且定值為0;
(3)經(jīng)研究發(fā)現(xiàn)將(2)中的點(diǎn)A改為點(diǎn)B,其余條件不變,直線EF的斜率也為定值,且定值為
3
4
,若點(diǎn)M(x0,y0)(y0≠0)為圓P上任意一點(diǎn),請(qǐng)給出類似于(2)的正確命題(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:0.001-
1
3
-(
7
8
)
0
+16
3
4
+(
2
33
)
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一條曲線C在y軸右邊,C上任一點(diǎn)到點(diǎn)F(2,0)的距離減去它到y(tǒng)軸的距離的差都是2
(1)求曲線C的方程;
(2)一直線l與曲線C交于A,B兩點(diǎn),且|AF|+|BF|=8,求證:AB的垂直平分線恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+(y+2)2=10,求滿足下列條件的圓的切線方程.
(1)與直線L1:x+y-4=0平行;
(2)與直線L2:x-2y+4=0垂直;
(3)過切點(diǎn):A(4,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)為F1(-1,0),且點(diǎn)P(
6
2
1
2
)在橢圓C上.
(Ⅰ) 求橢圓C的方程;
(Ⅱ)若過定點(diǎn)A(-
2
,0)的直線l1交y軸于點(diǎn)Q,交曲線C于點(diǎn)R,過坐標(biāo)原點(diǎn)O作直線l2,使得l2∥l1,且l2交曲線C于點(diǎn)S,證明:|AQ|,
2
|OS|,|AR|三個(gè)數(shù)值成等比數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案