【題目】在平面直角坐標(biāo)系中,橢圓:的上頂點(diǎn)為,左、右焦點(diǎn)分別為,,直線(xiàn)的斜率為,點(diǎn),在橢圓上,其中是橢圓上一動(dòng)點(diǎn),點(diǎn)坐標(biāo)為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)作直線(xiàn)與軸垂直,交橢圓于,兩點(diǎn)(,兩點(diǎn)均不與點(diǎn)重合),直線(xiàn),與軸分別交于點(diǎn),,試求的最小值.
【答案】(1) (2)4
【解析】
(1)根據(jù)直線(xiàn)的斜率求得的關(guān)系式,結(jié)合在橢圓上列方程,求得的值,進(jìn)而求得橢圓標(biāo)準(zhǔn)方程.
(2)設(shè)出的坐標(biāo),求得直線(xiàn)的方程,由此求得的坐標(biāo),即求得的表達(dá)式,對(duì)利用基本不等式,結(jié)合的坐標(biāo)滿(mǎn)足橢圓方程進(jìn)行化簡(jiǎn),由此求得的最小值.
(1)由直線(xiàn)的斜率為可知直線(xiàn)的傾斜角為.
在中,,于是,,
橢圓:,將代入得,所以.
所以,橢圓的標(biāo)準(zhǔn)方程.
(2)設(shè)點(diǎn),,,
于是,直線(xiàn):,令,,
所以,
直線(xiàn):,令,,
所以,
,
又,,
代入上式并化簡(jiǎn),
即,
當(dāng)(即)時(shí)取得最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量a=(-2,1),b=(x,y).
(1)若x,y分別表示將一枚質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時(shí)第一次、第二次出現(xiàn)的點(diǎn)數(shù),求滿(mǎn)足a·b=-1的概率;
(2)若x,y在連續(xù)區(qū)間[1,6]上取值,求滿(mǎn)足a·b<0的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,平面平面,底面為矩形,,,,、分別為線(xiàn)段、上一點(diǎn),且,.
(1)證明:;
(2)證明:平面,并求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某旅行社為調(diào)查市民喜歡“人文景觀”景點(diǎn)是否與年齡有關(guān),隨機(jī)抽取了55名市民,得到數(shù)據(jù)如下表:
喜歡 | 不喜歡 | 合計(jì) | |
大于40歲 | 20 | 5 | 25 |
20歲至40歲 | 10 | 20 | 30 |
合計(jì) | 30 | 25 | 55 |
(1)判斷是否有的把握認(rèn)為喜歡“人文景觀”景點(diǎn)與年齡有關(guān)?
(2)已知20歲到40歲喜歡“人文景觀”景點(diǎn)的市民中,有3位還比較喜歡“自然景觀”景點(diǎn),現(xiàn)在從20歲到40歲的10位市民中,選出3名,記選出喜歡“自然景觀”景點(diǎn)的人數(shù)為,求的分布列、數(shù)學(xué)期望.
(參考公式:,其中)
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】霧霾大氣嚴(yán)重影響人們的生活,某科技公司擬投資開(kāi)發(fā)新型節(jié)能環(huán)保產(chǎn)品,策劃部制定投資計(jì)劃時(shí),不僅要考慮可能獲得的盈利,而且還要考慮可能出現(xiàn)的虧損,經(jīng)過(guò)市場(chǎng)調(diào)查,公司打算投資甲、乙兩個(gè)項(xiàng)目,根據(jù)預(yù)測(cè),甲、乙項(xiàng)目可能的最大盈利率分別為和,可能的最大虧損率分別為和,投資人計(jì)劃投資金額不超過(guò)9萬(wàn)元,要求確?赡艿馁Y金虧損不超過(guò)萬(wàn)元.
Ⅰ若投資人用x萬(wàn)元投資甲項(xiàng)目,y萬(wàn)元投資乙項(xiàng)目,試寫(xiě)出x,y所滿(mǎn)足的條件,并在直角坐標(biāo)系內(nèi)作出表示x,y范圍的圖形.
Ⅱ根據(jù)的規(guī)劃,投資公司對(duì)甲、乙兩個(gè)項(xiàng)目分別投資多少萬(wàn)元,才能使可能的盈利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)M是棱長(zhǎng)為2的正方體ABCD-A1B1C1D1的棱AD的中點(diǎn),點(diǎn)P在面BCC1B1所在的平面內(nèi),若平面D1PM分別與平面ABCD和平面BCC1B1所成的銳二面角相等,則點(diǎn)P到點(diǎn)C1的最短距離是( )
A.B.C.1D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校運(yùn)動(dòng)會(huì)的立定跳遠(yuǎn)和30秒跳繩兩個(gè)單項(xiàng)比賽分成預(yù)賽和決賽兩個(gè)階段.下表為10名學(xué)生的預(yù)賽成績(jī),其中有三個(gè)數(shù)據(jù)模糊.
學(xué)生序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
立定跳遠(yuǎn)(單位:米) | 1.96 | 1.92 | 1.82 | 1.80 | 1.78 | 1.76 | 1.74 | 1.72 | 1.68 | 1.60 |
30秒跳繩(單位:次) | 63 | a | 75 | 60 | 63 | 72 | 70 | a1 | b | 65 |
在這10名學(xué)生中,進(jìn)入立定跳遠(yuǎn)決賽的有8人,同時(shí)進(jìn)入立定跳遠(yuǎn)決賽和30秒跳繩決賽的有6人,則
(A)2號(hào)學(xué)生進(jìn)入30秒跳繩決賽
(B)5號(hào)學(xué)生進(jìn)入30秒跳繩決賽
(C)8號(hào)學(xué)生進(jìn)入30秒跳繩決賽
(D)9號(hào)學(xué)生進(jìn)入30秒跳繩決賽
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,底面是平行四邊形,,側(cè)面底面,,, 分別為的中點(diǎn),點(diǎn)在線(xiàn)段上.
(Ⅰ)求證:直線(xiàn)平面;
(Ⅱ)若為的中點(diǎn),求平面與平面所成銳二面角的余弦值;
(Ⅲ)設(shè),當(dāng)為何值時(shí),直線(xiàn)與平面所成角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)為a的正方體ABCD﹣A1B1C1D1中,P為A1D1的中點(diǎn),Q為A1B1上任意一點(diǎn),E、F為CD上任意兩點(diǎn),且EF的長(zhǎng)為定值,則下面的四個(gè)值中不為定值的是( )
A.點(diǎn)P到平面QEF的距離
B.直線(xiàn)PQ與平面PEF所成的角
C.三棱錐P﹣QEF的體積
D.二面角P﹣EF﹣Q的大小
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com