【題目】如圖,在棱長(zhǎng)為a的正方體ABCDA1B1C1D1中,PA1D1的中點(diǎn),QA1B1上任意一點(diǎn),E、FCD上任意兩點(diǎn),且EF的長(zhǎng)為定值,則下面的四個(gè)值中不為定值的是(

A.點(diǎn)P到平面QEF的距離

B.直線PQ與平面PEF所成的角

C.三棱錐PQEF的體積

D.二面角PEFQ的大小

【答案】B

【解析】

A選項(xiàng):根據(jù)和平面都是固定的,得到到平面的距離也是固定的.

B選項(xiàng):因?yàn)?/span>是動(dòng)點(diǎn),也是動(dòng)點(diǎn),得到直線與平面所成的角不是定值.

C選項(xiàng):因?yàn)?/span>的面積是定值,高也是定值,得到三棱錐體積也是定值.

D選項(xiàng):因?yàn)?/span>,上任意一點(diǎn),、上任意兩點(diǎn),所以二面角的大小為定值.

A選項(xiàng):因?yàn)槠矫?/span>也是平面,既然和平面都是固定的,所以到平面的距離也是固定的,故A為定值.

B選項(xiàng):因?yàn)?/span>是動(dòng)點(diǎn),也是動(dòng)點(diǎn),推不出定值結(jié)論,所以B不是定值.

C選項(xiàng):因長(zhǎng)為定值,所以的面積是定值,再根據(jù)選項(xiàng)A知:到平面的距離也是定值,所以C是定值.

D選項(xiàng):因?yàn)?/span>,上任意一點(diǎn),上任意兩點(diǎn),所以二面角的大小為定值,所以D是定值.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓的上頂點(diǎn)為,左、右焦點(diǎn)分別為,,直線的斜率為,點(diǎn)在橢圓上,其中是橢圓上一動(dòng)點(diǎn),點(diǎn)坐標(biāo)為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)作直線軸垂直,交橢圓于,兩點(diǎn)(兩點(diǎn)均不與點(diǎn)重合),直線,軸分別交于點(diǎn),試求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法:①若線性回歸方程為,則當(dāng)變量增加一個(gè)單位時(shí),一定增加3個(gè)單位;②將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上同一個(gè)常數(shù)后,方差不會(huì)改變;③線性回歸直線方程必過(guò)點(diǎn);④抽簽法屬于簡(jiǎn)單隨機(jī)抽樣;其中錯(cuò)誤的說(shuō)法是(

A.①③B.②③④C.D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若對(duì)于區(qū)間上的任意,都有,則實(shí)數(shù)的最小值是(  )

A. 20B. 18

C. 3D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與軸的正半軸重合,且長(zhǎng)度單位相同;曲線 的方程是,直線的參數(shù)方程為為參數(shù),),設(shè), 直線與曲線交于 兩點(diǎn).

(1)當(dāng)時(shí),求的長(zhǎng)度;

(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線2xy10與直線x2y+10交于點(diǎn)P

1)求過(guò)點(diǎn)P且垂直于直線3x+4y150的直線l1的方程;(結(jié)果寫(xiě)成直線方程的一般式)

2)求過(guò)點(diǎn)P并且在兩坐標(biāo)軸上截距相等的直線l2方程(結(jié)果寫(xiě)成直線方程的一般式)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若存在一個(gè)實(shí)數(shù),使得成立,則稱為函數(shù)的一個(gè)不動(dòng)點(diǎn),設(shè)函數(shù), 為自然對(duì)數(shù)的底數(shù)),定義在上的連續(xù)函數(shù)滿足,且當(dāng)時(shí), .若存在,且為函數(shù)的一個(gè)不動(dòng)點(diǎn),則實(shí)數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年4月,甲乙兩校的學(xué)生參加了某考試機(jī)構(gòu)舉行的大聯(lián)考,現(xiàn)從這兩校參加考試的學(xué)生數(shù)學(xué)成績(jī)?cè)?00分及以上的試卷中用系統(tǒng)抽樣的方法各抽取了20份試卷,并將這40份試卷的得分制作成如下的莖葉圖.

(1)試通過(guò)莖葉圖比較這40份試卷的兩校學(xué)生數(shù)學(xué)成績(jī)的中位數(shù);

(2)若把數(shù)學(xué)成績(jī)不低于135分的記作數(shù)學(xué)成績(jī)優(yōu)秀,根據(jù)莖葉圖中的數(shù)據(jù),判斷是否有90的把握認(rèn)為數(shù)學(xué)成績(jī)?cè)?00分及以上的學(xué)生中數(shù)學(xué)成績(jī)是否優(yōu)秀與所在學(xué)校有關(guān);

(3)若從這40名學(xué)生中選取數(shù)學(xué)成績(jī)?cè)?/span>的學(xué)生,用分層抽樣的方式從甲乙兩校中抽取5人,再?gòu)倪@5人中隨機(jī)抽取3人分析其失分原因,求這3人中恰有2人是乙校學(xué)生的概率.

參考公式與臨界值表:,其中

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓:的四個(gè)頂點(diǎn)圍成的四邊形的面積為,原點(diǎn)到直線的距離為.

(1)求橢圓的方程;

(2)已知定點(diǎn),是否存在過(guò)的直線,使與橢圓交于,兩點(diǎn),且以為直徑的圓過(guò)橢圓的左頂點(diǎn)?若存在,求出的方程:若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案