精英家教網 > 高中數學 > 題目詳情
已知A(0,1),曲線C:y=logax恒過點B,若P是曲線C上的動點,且
AB
AP
的最小值為2,則a=
 
考點:平面向量數量積的運算
專題:函數的性質及應用,平面向量及應用
分析:運用對數函數的圖象特點可得B(1,0),設P(x,logax),運用向量的數量積的坐標表示,可得f(x)=x-logax+1,再由導數,求得極值點即為最值點,對a討論,0<a<1,a>1兩種情況,通過單調性即可判斷,并求得a=e.
解答: 解:曲線C:y=logax恒過點B,則令x=1,可得y=0,
即B(1,0),又點A(0,1),設P(x,logax),
AB
AP
=(1,-1)•(x,logax-1)=x-logax+1

由于f(x)=x-logax+1在(0,+∞)上有最小值2,
且f(1)=2,故x=1是f(x)的極值點,即最小值點.
f′(x)=1-
1
xlna
=
xlna-1
xlna

若0<a<1,f'(x)>0,f(x)單調增,在(0,+∞)無最小值,故a>1,
設f'(x)=0,則x=logae.
當x∈(0,logae)時,f'(x)<0,當x∈(logae,+∞)時,f'(x)>0,
從而當且僅當x=logae時,f(x)取最小值,
所以logae=1,即有a=e.
故答案為:e.
點評:本題考查向量的數量積的坐標表示,主要考查函數的導數的運用:求極值和最值,運用分類討論的思想和函數的單調性是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知t∈R,i為虛數單位,復數z1=3+4i,z2=t+i,且z1•z2是實數,則t等于( �。�
A、
3
4
B、
4
3
C、-
4
3
D、-
3
4

查看答案和解析>>

科目:高中數學 來源: 題型:

已知∠Q的頂點與原點重合,始邊與x軸的正半軸重合,終邊在直線y=2x上,則cosQ=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=loga(x+1),g(x)=loga(1-x)(a>0且a≠1),令F(x)=f(x)-g(x).
(1)求函數y=F(x)的定義域;
(2)判斷函數y=F(x)的奇偶性并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)=log 
1
3
(4-x2)的單調遞減區(qū)間是(  )
A、(-2,0)
B、(0,2)
C、(-∞,-2)
D、(2,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

設過橢圓C的一個焦點與x軸垂直的直線l與橢圓交于A、B兩點,|AB|與橢圓的焦距相等,則橢圓C的離心率為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,四邊形ABCD為菱形,ACFE為平行四邊形,且平面ACFE⊥平面ABCD,設BD與AC相交于點G,H為FG的中點.
(1)證明:BD⊥CH;
(2)若AB=BD=2,AE=
3
,CH=
3
2
,求三棱錐F-BDC的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)=2x-lnx在其定義域內的一個子區(qū)間(k-2,k+1)上不是單調函數,則實數k的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

若2x+3y+4z=11,則x2+y2+z2的最小值為
 

查看答案和解析>>

同步練習冊答案