【題目】如圖,在四棱錐PABCD中,已知,點(diǎn)QAC中點(diǎn),底面ABCD,,點(diǎn)MPC的中點(diǎn).

1)求直線PB與平面ADM所成角的正弦值;

2)求二面角D-AM-C的正弦值;

3)記棱PD的中點(diǎn)為N,若點(diǎn)Q在線段OP上,且平面ADM,求線段OQ的長(zhǎng).

【答案】1;(2;(3.

【解析】

O為原點(diǎn),分別以向量的方向?yàn)?/span>x,y,z軸正方向,可以建立空間直角坐標(biāo)系,(1)求出直線PB的方向向量,利用向量垂直數(shù)量積為零列方程求出平面ADM的法向量,可求直線PB與平面ADM所成角的正弦值;(2)由已知可得平面,故是平面的一個(gè)法向量,結(jié)合(1)中平面ADM的法向量,利用空間向量夾角余弦公式可求二面角D-AM-C的余弦值,從而可得正弦值;(3)設(shè)線段OQ的長(zhǎng)為,則點(diǎn)Q的坐標(biāo)為,由已知可得點(diǎn)N的坐標(biāo)為,利用直線與平面的法向量數(shù)量積為零列方程求解即可.

依題意,以O為原點(diǎn),分別以向量的方向?yàn)?/span>x,y,z軸正方向,可以建立空間直角坐標(biāo)系(如圖),可得

.

1)依題意,可得,

設(shè)為平面ADM的法向量,則

,不妨設(shè),可得,

,

直線PB與平面ADM所成角的正弦值為;

(2)由已知可得,

所以平面,

是平面的一個(gè)法向量,

依題意可得

因此有,于是有,

二面角D-AM-C的正弦值

(3)設(shè)線段OQ的長(zhǎng)為,則點(diǎn)Q的坐標(biāo)為

由已知可得點(diǎn)N的坐標(biāo)為,進(jìn)而可得,

平面ADM,故,

,解得,

線段OQ的長(zhǎng)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某次高三年級(jí)模擬考試中,數(shù)學(xué)試卷有一道滿分10分的選做題,學(xué)生可以從A,B兩道題目中任選一題作答.某校有900名高三學(xué)生參加了本次考試,為了了解該校學(xué)生解答該選做題的得分情況,作為下一步教學(xué)的參考依據(jù),計(jì)劃從900名考生的選做題成績(jī)中隨機(jī)抽取一個(gè)容量為10的樣本,為此將900名考生選做題的成績(jī)按照隨機(jī)順序依次編號(hào)為001~900.

1)若采用系統(tǒng)抽樣法抽樣,從編號(hào)為001~090的成績(jī)中用簡(jiǎn)單隨機(jī)抽樣確定的成績(jī)編號(hào)為025,求樣本中所有成績(jī)編號(hào)之和;

2)若采用分層抽樣,按照學(xué)生選擇A題目或B題目,將成績(jī)分為兩層.已知該校高三學(xué)生有540人選做A題目,有360人選做B題目,選取的樣本中,A題目的成績(jī)平均數(shù)為5,方差為2,B題目的成績(jī)平均數(shù)為5.5,方差為0.25.

i)用樣本估計(jì)該校這900名考生選做題得分的平均數(shù)與方差;

ii)本選做題閱卷分值都為整數(shù),且選取的樣本中,A題目成績(jī)的中位數(shù)和B題目成績(jī)的中位數(shù)都是5.5.從樣本中隨機(jī)選取兩個(gè)大于樣本平均值的數(shù)據(jù)做進(jìn)一步調(diào)查,求取到的兩個(gè)成績(jī)來(lái)自不同題目的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)在精準(zhǔn)扶貧行動(dòng)中,決定幫助一貧困山區(qū)將水果運(yùn)出銷售.現(xiàn)有8輛甲型車(chē)和4輛乙型車(chē),甲型車(chē)每次最多能運(yùn)6噸且每天能運(yùn)4次,乙型車(chē)每次最多能運(yùn)10噸且每天能運(yùn)3次,甲型車(chē)每天費(fèi)用320元,乙型車(chē)每天費(fèi)用504元.若需要一天內(nèi)把180噸水果運(yùn)輸?shù)交疖?chē)站,則通過(guò)合理調(diào)配車(chē)輛,運(yùn)送這批水果的費(fèi)用最少為(

A.2400B.2560C.2816D.4576

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求曲線在點(diǎn)處的切線方程;

(2)證明:在區(qū)間上有且僅有個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合是由數(shù)列組成的集合,其中數(shù)列同時(shí)滿足以下三個(gè)條件:

①數(shù)列共有項(xiàng),;②;③

1)若等比數(shù)列,求等比數(shù)列的首項(xiàng)、公比和項(xiàng)數(shù);

2)若等差數(shù)列是遞增數(shù)列,并且,常數(shù),求該數(shù)列的通項(xiàng)公式;

3)若數(shù)列,常數(shù),,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)是自然對(duì)數(shù)的底數(shù))有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】鳳鳴山中學(xué)的高中女生體重 (單位:kg)與身高(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)),用最小二乘法近似得到回歸直線方程為,則下列結(jié)論中不正確的是(

A.具有正線性相關(guān)關(guān)系

B.回歸直線過(guò)樣本的中心點(diǎn)

C.若該中學(xué)某高中女生身高增加1cm,則其體重約增加0.85kg

D.若該中學(xué)某高中女生身高為160cm,則可斷定其體重必為50.29kg.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將數(shù)列的前項(xiàng)分成兩部分,且兩部分的項(xiàng)數(shù)分別是,若兩部分和相等,則稱數(shù)列的前項(xiàng)的和能夠進(jìn)行等和分割.

1)若,試寫(xiě)出數(shù)列的前項(xiàng)和所有等和分割;

2)求證:等差數(shù)列的前項(xiàng)的和能夠進(jìn)行等和分割;

3)若數(shù)列的通項(xiàng)公式為:,且數(shù)列的前項(xiàng)的和能夠進(jìn)行等和分割,求所有滿足條件的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列六個(gè)命題:

1)若,則函數(shù)的圖像關(guān)于直線對(duì)稱.

2的圖像關(guān)于直線對(duì)稱.

3的反函數(shù)與是相同的函數(shù).

4無(wú)最大值也無(wú)最小值.

5的最小正周期為.

6有對(duì)稱軸兩條,對(duì)稱中心有三個(gè).

則正確命題的個(gè)數(shù)是(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案