17.已知點P(-1,1)和點Q(2,2),若直線l:x+my+m=0與線段PQ沒有公共點,則實數(shù)m的取值范圍是m<-$\frac{2}{3}$或m$>\frac{1}{2}$..

分析 直線l:x+my+m=0即x+m(y+1)=0,令$\left\{\begin{array}{l}{x=0}\\{y+1=0}\end{array}\right.$,可得直線經(jīng)過定點M(0,-1).利用斜率計算公式可得kPM=-2,kMQ=$\frac{3}{2}$.根據(jù)直線l:x+my+m=0與線段PQ沒有公共點,可得$-\frac{1}{m}$<-2或$-\frac{1}{m}<\frac{3}{2}$.解出即可得出.

解答 解:直線l:x+my+m=0即x+m(y+1)=0,令$\left\{\begin{array}{l}{x=0}\\{y+1=0}\end{array}\right.$,解得x=0,y=-1.∴直線經(jīng)過定點M(0,-1).
kPM=$\frac{-1-1}{0-(-1)}$=-2,kMQ=$\frac{-1-2}{0-2}$=$\frac{3}{2}$.
∵直線l:x+my+m=0與線段PQ沒有公共點,
∴$-\frac{1}{m}$<-2或$-\frac{1}{m}<\frac{3}{2}$.
解得m<-$\frac{2}{3}$或m$>\frac{1}{2}$.
故答案為:m<-$\frac{2}{3}$或m$>\frac{1}{2}$.

點評 本題考查了斜率計算公式、不等式的解法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.點(1,1)到直線x-y+1=0的距離是(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{3\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)函數(shù)f(x)=1-$\sqrt{x+1}$,g(x)=ln(ax2-3x+1),若對任意的x1∈[0,+∞),都存在x2∈R,使得f(x1)=g(x2)成立,則實數(shù)a的最大值為(  )
A.2B.$\frac{9}{4}$C.4D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=4x2+kx-1在區(qū)間[1,2]上是單調(diào)函數(shù),則實數(shù)k的取值范圍是( 。
A.(-∞,-16]∪[-8,+∞)B.[-16,-8]C.(-∞,-8)∪[-4,+∞)D.[-8,-4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)計算:$\root{3}{(-4)^{3}}$-($\frac{1}{2}$)0+0.25${\;}^{\frac{1}{2}}$×($\frac{-1}{\sqrt{2}}$)-4
(2)已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,求$\frac{{x}^{2}+{x}^{-2}-2}{x+{x}^{-1}-3}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知O為坐標(biāo)原點,設(shè)動點M(2,t)(t>0).
(1)若過點P(0,4$\sqrt{3}$)的直線l與圓C:x2+y2-8x=0相切,求直線l的方程;
(2)求以O(shè)M為直徑且被直線3x-4y-5=0截得的弦長為2的圓的方程;
(3)設(shè)A(1,0),過點A作OM的垂線與以O(shè)M為直徑的圓交于點N,求證:線段ON的長為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.雙曲線$\frac{x^2}{9}-\frac{y^2}{3}=1$的漸近線方程為y=±$\frac{\sqrt{3}}{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若復(fù)數(shù)$\frac{a+i}{1-i}$是純虛數(shù),其中i為虛數(shù)單位,則實數(shù)a的值為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x-aex(a∈R,e為自然對數(shù)的底數(shù)).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)有兩個零點x1,x2,求證:x1+x2>2.

查看答案和解析>>

同步練習(xí)冊答案