【題目】已知三點(diǎn)O(0,0),A(﹣2,1),B(2,1),曲線C上任意一點(diǎn)M(x,y)滿足| + |= + )+2.
(1)求曲線C的方程;
(2)動(dòng)點(diǎn)Q(x0 , y0)(﹣2<x0<2)在曲線C上,曲線C在點(diǎn)Q處的切線為直線l:是否存在定點(diǎn)P(0,t)(t<0),使得l與PA,PB都相交,交點(diǎn)分別為D,E,且△QAB與△PDE的面積之比是常數(shù)?若存在,求t的值.若不存在,說明理由.

【答案】
(1)解:由 =(﹣2﹣x,1﹣y), =(2﹣x,1﹣y)可得 + =(﹣2x,2﹣2y),

∴| + |= , + )+2=(x,y)(0,2)+2=2y+2.

由題意可得 =2y+2,化簡(jiǎn)可得 x2=4y.


(2)解:假設(shè)存在點(diǎn)P(0,t)(t<0),滿足條件,則直線PA的方程是y= ,直線PB的方程是y=

∵﹣2<x0<2,∴

①當(dāng)﹣1<t<0時(shí), ,存在x0∈(﹣2,2),使得

∴l(xiāng)∥PA,∴當(dāng)﹣1<t<0時(shí),不符合題意;

②當(dāng)t≤﹣1時(shí), ,

∴l(xiāng)與直線PA,PB一定相交,分別聯(lián)立方程組

, ,解得D,E的橫坐標(biāo)分別是 ,

∵|FP|=﹣

=

= ×

∵x0∈(﹣2,2),△QAB與△PDE的面積之比是常數(shù)

,解得t=﹣1,

∴△QAB與△PDE的面積之比是2.


【解析】(1)用坐標(biāo)表示 ,從而可得 + ,可求| + |,利用向量的數(shù)量積,結(jié)合M(x,y)滿足| + |= + )+2,可得曲線C的方程;(2)假設(shè)存在點(diǎn)P(0,t)(t<0),滿足條件,則直線PA的方程是y= ,直線PB的方程是y= 分類討論:①當(dāng)﹣1<t<0時(shí),l∥PA,不符合題意;②當(dāng)t≤﹣1時(shí), ,分別聯(lián)立方程組,解得D,E的橫坐標(biāo),進(jìn)而可得△QAB與△PDE的面積之比,利用其為常數(shù),即可求得結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三年級(jí)舉行了一次全年級(jí)的大型考試,在數(shù)學(xué)成績(jī)優(yōu)秀和非優(yōu)秀的學(xué)生中,物理、化學(xué)、總分成績(jī)也為優(yōu)秀的人數(shù)如下表所示,則我們能以99%的把握認(rèn)為數(shù)學(xué)成績(jī)優(yōu)秀與物理、化學(xué)、總分成績(jī)優(yōu)秀有關(guān)系嗎?

物理優(yōu)秀

化學(xué)優(yōu)秀

總分優(yōu)秀

數(shù)學(xué)優(yōu)秀

228

225

267

數(shù)學(xué)非優(yōu)秀

143

156

99

:該年級(jí)此次考試中數(shù)學(xué)成績(jī)優(yōu)秀的有360,非優(yōu)秀的有880.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,既是奇函數(shù),又在(0,1)上是增函數(shù)的是()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=+bx+c,

(1)若f(x)在(-∞,+∞)上是增函數(shù),求b的取值范圍;

(2)若f(x)在x=1處取得極值,且x[-1,2]時(shí),f(x)<c2恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,從A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)這6個(gè)點(diǎn)中隨機(jī)選取3個(gè)點(diǎn),將這3個(gè)點(diǎn)及原點(diǎn)O兩兩相連構(gòu)成一個(gè)“立體”,記該“立體”的體積為隨機(jī)變量V(如果選取的3個(gè)點(diǎn)與原點(diǎn)在同一個(gè)平面內(nèi),此時(shí)“立體”的體積V=0).

(1)求V=0的概率;
(2)求V的分布列及數(shù)學(xué)期望EV.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R上且周期為2的函數(shù),在區(qū)間[﹣1,1]上,f(x)= 其中a,b∈R.若 = ,則a+3b的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)2010年至2016年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如下表:

年 份

2010

2011

2012

2013

2014

2015

2016

年份代號(hào)t

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y關(guān)于t的回歸直線方程;

(2)利用(1)中的回歸方程,分析2010年至2016年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2018年農(nóng)村居民家庭人均純收入.

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)商場(chǎng)經(jīng)銷某種商品,根據(jù)以往資料統(tǒng)計(jì),每位顧客采用的分期付款次數(shù)的分布列為:

1

2

3

4

5

0.4

0.2

0.2

0.1

0.1

商場(chǎng)經(jīng)銷一件該商品,采用1期付款,其利潤為200元;采用2期或3期付款,其利潤為250元;采用4期或5期付款,其利潤為300元.表示經(jīng)銷一件該商品的利潤.

(1)求購買該商品的3位顧客中,恰有2位采用1期付款的概率;

(2)求的分布列及期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(cosωx﹣sinωx,sinωx), =(﹣cosωx﹣sinωx,2 cosωx),設(shè)函數(shù)f(x)= +λ(x∈R)的圖象關(guān)于直線x=π對(duì)稱,其中ω,λ為常數(shù),且ω∈( ,1)
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過點(diǎn)( ,0)求函數(shù)f(x)在區(qū)間[0, ]上的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案