已知函數(shù)f(x)和g(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),且f(x)=x2+2x.
(1)求函數(shù)g(x)的解析式;
(2)解不等式g(x)≥f(x)-|x-1|;
(3)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函數(shù),求實(shí)數(shù)λ的取值范圍
(1)設(shè)函數(shù)y=f(x)的圖象上任一點(diǎn)Q(x0,y0)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為P(x,y),
則 ,即 .
∵點(diǎn)Q(x0,y0)在函數(shù)y=f(x)的圖象上,
∴-y=x2-2x,即y=-x2+2x,故g(x)=-x2+2x.
(2)由g(x)≥f(x)-|x-1|可得:2x2-|x-1|≤0.
當(dāng)x≥1時(shí),2x2-x+1≤0,此時(shí)不等式無(wú)解.
當(dāng)x<1時(shí),2x2+x-1≤0,∴-1≤x≤.
因此,原不等式的解集為.
(3)h(x)=-(1+λ)x2+2(1-λ)x+1.
①當(dāng)λ=-1時(shí),得h(x)=4x+1在[-1,1]上是增函數(shù),符合題意,∴λ=-1.
②當(dāng)λ≠-1時(shí),拋物線(xiàn)h(x)=-(1+λ)x2+2(1-λ)x+1的對(duì)稱(chēng)軸的方程為x=.
(ⅰ)當(dāng)λ<-1,且≤-1時(shí),h(x)在[-1,1]上是增函數(shù),解得λ<-1.
(ⅱ)當(dāng)λ>-1,且≥1時(shí),h(x)在[-1,1]上是增函數(shù),解得-1<λ≤0.
綜上,得λ≤0.
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分) 設(shè)a > 1,函數(shù).
(1)求的反函數(shù);
(2)若在[0,1]上的最大值與最小值互為相反數(shù),求a的值;
(3)若的圖象不經(jīng)過(guò)第二象限,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)=ax2+(b-8)x-a-ab , 當(dāng)x(-∞,-3)(2,+∞)時(shí), <0,當(dāng)x(-3,2)時(shí)>0 .
(1)求在[0,1]內(nèi)的值域.
(2)若ax2+bx+c≤0的解集為R,求實(shí)數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
已知定義在區(qū)間上的函數(shù)為奇函數(shù)且
(1)求實(shí)數(shù)m,n的值;
(2)求證:函數(shù)上是增函數(shù)。
(3)若恒成立,求t的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
集合M={a,b,c},N={-1,0,1},映射f:M→N滿(mǎn)足f(a)+f(b)+f(c)=0,那么映射f:M→N的個(gè)數(shù)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)對(duì)任意都有且x>0時(shí),<0, .(1)求在區(qū)間[-3,3]上的最大和最小值,(2)解關(guān)于x的不等式,(其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(14分) 已知函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1c/c/tnqss.gif" style="vertical-align:middle;" />,對(duì)于定義域內(nèi)的任意x,y都有,且,當(dāng)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com