【題目】隨著網(wǎng)絡(luò)和智能手機(jī)的普及與快速發(fā)展,許多可以解答各學(xué)科問(wèn)題的搜題軟件走紅.有教育工作者認(rèn)為:網(wǎng)搜答案可以起到拓展思路的作用,但是對(duì)多數(shù)學(xué)生來(lái)講,容易產(chǎn)生依賴心理,對(duì)學(xué)習(xí)能力造成損害.為了了解網(wǎng)絡(luò)搜題在學(xué)生中的使用情況,某校對(duì)學(xué)生在一周時(shí)間內(nèi)進(jìn)行網(wǎng)絡(luò)搜題的頻數(shù)進(jìn)行了問(wèn)卷調(diào)查,并從參與調(diào)查的學(xué)生中抽取了男、女學(xué)生各50人進(jìn)行抽樣分析,得到如下樣本頻數(shù)分布表:
將學(xué)生在一周時(shí)間內(nèi)進(jìn)行網(wǎng)絡(luò)搜題頻數(shù)超過(guò)20次的行為視為“經(jīng)常使用網(wǎng)絡(luò)搜題”,不超過(guò)20次的視為“偶爾或不用網(wǎng)絡(luò)搜題”.
(1)根據(jù)已有數(shù)據(jù),完成下列列聯(lián)表(單位:人)中數(shù)據(jù)的填寫(xiě),并判斷是否在犯錯(cuò)誤的概率不超過(guò)1%的前提下有把握認(rèn)為使用網(wǎng)絡(luò)搜題與性別有關(guān)?
(2)將上述調(diào)查所得到的頻率視為概率,從該校所有參與調(diào)查的學(xué)生中,采用隨機(jī)抽樣的方法每次抽取一個(gè)人,抽取4人,記經(jīng)常使用網(wǎng)絡(luò)搜題的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
參考公式:,其中.
參考數(shù)據(jù):
【答案】(1)列表見(jiàn)解析,在犯錯(cuò)誤的概率不超過(guò)1%的前提下有把握認(rèn)為使用網(wǎng)絡(luò)搜題與性別有關(guān);(2)分布列見(jiàn)解析,
【解析】
(1)根據(jù)樣本頻數(shù)分布表的數(shù)據(jù)即可完成列聯(lián)表,再利用列聯(lián)表求出觀測(cè)值,根據(jù)獨(dú)立性檢驗(yàn)的思想解求解.
(2)根據(jù)二項(xiàng)分布求出隨機(jī)變量的概率,列出分布列即可求解.
(1)由題意得:
經(jīng)常使用網(wǎng)絡(luò)搜題 | 偶爾或不用網(wǎng)絡(luò)搜題 | 合計(jì) | |
男生 | 22 | 28 | 50 |
女生 | 38 | 12 | 50 |
合計(jì) | 60 | 40 | 100 |
∵
∴在犯錯(cuò)誤的概率不超過(guò)1%的前提下有把握認(rèn)為使用網(wǎng)絡(luò)搜題與性別有關(guān).
(2)依題意,.
;
.
的分布列為:
0 | 1 | 2 | 3 | 4 | |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某籃球隊(duì)甲、乙兩名運(yùn)動(dòng)員練習(xí)罰球,每人練習(xí)10組,每組罰球40個(gè).命中個(gè)數(shù)的莖葉圖如圖,則下面結(jié)論中錯(cuò)誤的一個(gè)是( )
A. 甲的極差是29 B. 甲的中位數(shù)是24
C. 甲罰球命中率比乙高 D. 乙的眾數(shù)是21
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,正確的命題是( 。
A.若a>b,c>d,則ac>bdB.若,則 a<b
C.若b>c,則|a|b≥|a|cD.若a>b,c>d,則a﹣c>b﹣d
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,.
(1)令,求證:有唯一的極值點(diǎn);
(2)若點(diǎn)為函數(shù)上的任意一點(diǎn),點(diǎn)為函數(shù)上的任意一點(diǎn),求、兩點(diǎn)之間距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】阿波羅尼斯(約公元前年)證明過(guò)這樣一個(gè)命題:平面內(nèi)到兩定點(diǎn)距離之比為常數(shù)的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱為阿波羅尼斯圓.若平面內(nèi)兩定點(diǎn)、間的距離為,動(dòng)點(diǎn)滿足,則的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:,右焦點(diǎn),點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)設(shè)為橢圓上一點(diǎn),過(guò)焦點(diǎn)的弦分別為,設(shè),,若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從甲地到乙地要經(jīng)過(guò)3個(gè)十字路口,設(shè)各路口信號(hào)燈工作相互獨(dú)立,且在各路口遇到紅燈的概率分別為.
(Ⅰ)設(shè)表示一輛車從甲地到乙地遇到紅燈的個(gè)數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(Ⅱ)若有2輛車獨(dú)立地從甲地到乙地,求這2輛車共遇到1個(gè)紅燈的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)為曲線上的動(dòng)點(diǎn),點(diǎn)在線段上,且滿足,求點(diǎn)的軌跡的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)在曲線上,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)若曲線在點(diǎn)處的切線與直線垂直,求函數(shù)的單調(diào)區(qū)間;
(2)若對(duì)于任意,都有成立,試求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com