精英家教網 > 高中數學 > 題目詳情
若函數f(x)為定義域D上單調函數,且存在區(qū)間[a,b]⊆D(其中a<b),使得當x∈[a,b]時,f(x)的取值范圍恰為[a,b],則稱函數f(x)是D上的正函數,區(qū)間[a,b]叫做等域區(qū)間.
(1)已知是[0,+∞)上的正函數,求f(x)的等域區(qū)間;
(2)試探究是否存在實數m,使得函數g(x)=x2+m是(-∞,0)上的正函數?若存在,請求出實數m的取值范圍;若不存在,請說明理由.
【答案】分析:(1)因為是[0,+∞)上的正函數,然后根據正函數的定義建立方程組,解之可求出f(x)的等域區(qū)間;
(2)根據函數g(x)=x2+m是(-∞,0)上的正函數建立方程組,消去b,求出a的取值范圍,轉化成關于a的方程a2+a+m+1=0在區(qū)間內有實數解進行求解.
解答:解:(1)因為是[0,+∞)上的正函數,
在[0,+∞)上單調遞增,
所以當x∈[a,b]時,


解得a=0,b=1,
故函數f(x)的“等域區(qū)間”為[0,1];
(2)因為函數g(x)=x2+m是(-∞,0)上的正函數,
所以當x∈[a,b]時,


兩式相減得a2-b2=b-a,
即b=-(a+1),
代入a2+m=b得a2+a+m+1=0,
由a<b<0,
且b=-(a+1)
,
故關于a的方程a2+a+m+1=0在區(qū)間內有實數解,
記h(a)=a2+a+m+1,

解得
點評:本題主要考查了新的定義,以及函數的值域,同時考查了等價轉化的數學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若函數f(x)為定義在R上的奇函數,且x∈(0,+∞)時,f(x)=lg(x+1),求f(x)的表達式,并畫出示意圖.

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f (x)為定義在區(qū)間[-6,6]上的偶函數,且f(3)>f(1),則下列各式一定成立的是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)為定義在[0,+∞)上的增函數,定義在R上的函數g(x)滿足g(x)=f(|x|),則不等式g(
2x
)>g(1)
的解集為
(-2,0)∪(0,2)
(-2,0)∪(0,2)

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)為定義在R上的奇函數,且x∈(0,+∞)時,f(x)=2x
(1)求f(x)的表達式;
(2)在所給的坐標系中直接畫出函數f(x)圖象.(不必列表)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•煙臺二模)若函數f(x)為定義在R上的奇函數,當x>0時,f(x)=2x-1-3,則不等式f(x)>1的解集為
(-2,0)∪(3,+∞)
(-2,0)∪(3,+∞)

查看答案和解析>>

同步練習冊答案