【題目】在①,且,②,且,③,且這三個條件中任選一個,補(bǔ)充在下面問題中,若問題中的存在,求出和數(shù)列的通項公式與前項和;若不存在,請說明理由.
設(shè)為各項均為正數(shù)的數(shù)列的前項和,滿足________,是否存在,使得數(shù)列成為等差數(shù)列?
【答案】答案不唯一,具體見解析
【解析】
由,用換后得,兩式相減得,若選擇①,由可求得等差數(shù)列的通項公式及值,前項和;若選擇②,由得和的關(guān)系式,作為關(guān)于的二次方程,至少有正根,由根的分布得其條件是,得出與已知矛盾的結(jié)論,說明不存在;若選擇③,由,同樣可求和.
解:選擇①,
因為,所以,兩式相減,得
,
即,又,所以,
因為,且,所以,
由,得,即,
把代入上式,得,
當(dāng)時,由及,得,
所以,,滿足,可知數(shù)列是以3為首項,以2為公差的等差數(shù)列.
數(shù)列的通項公式為,
數(shù)列的前項和為.
選擇②,
因為,所以,兩式相減,得
,
即,又,所以,
由,得,即,
因為已知數(shù)列的各項均為正數(shù),所以,
因為關(guān)于的一元二次方程至少存在一個正實數(shù)解的充要條件是
,
解得,
這與已知條件矛盾,所以滿足條件的不存在.
(注:若存在兩個實數(shù)解分別為,,則,,
當(dāng)時,的解一正一負(fù);當(dāng)時,的解一正一零;
當(dāng)時,的解均為正.
所以方程至少存在一個正實數(shù)解,當(dāng)且僅當(dāng).)
選擇③,因為,所以,兩式相減,得
,
即,又,所以,
由,得,又已知,
所以,,
由,得,,所以,
當(dāng)時,由及得,
由,及,得,
所以和滿足,
可知數(shù)列是以3為首項,以2為公差的等差數(shù)列,
數(shù)列的通項公式為,
數(shù)列的前項和為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中盈不足章中有這樣一則故事:“今有良馬與駑馬發(fā)長安,至齊. 齊去長安三千里. 良馬初日行一百九十三里,日增一十二里;駑馬初日行九十七里,日減二里.” 為了計算每天良馬和駑馬所走的路程之和,設(shè)計框圖如下圖. 若輸出的 的值為 350,則判斷框中可填( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需用A,B兩種原料,已知生產(chǎn)1噸每種產(chǎn)品所需原料及每天原料的可用限額如表所示.如果生產(chǎn)1噸甲、乙產(chǎn)品可獲利潤分別為3萬元、4萬元,則該企業(yè)每天可獲得的最大利潤為( )
甲 | 乙 | 原料限額 | |
A/噸 | 3 | 2 | 12 |
B/噸 | 1 | 2 | 8 |
A.15萬元B.16萬元C.17萬元D.18萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個多面體的直觀圖及三視圖如圖所示,其中M ,N 分別是AF、BC 的中點
(1)求證:MN∥平面CDEF;
(2)求多面體A-CDEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對兩個變量與進(jìn)行線性相關(guān)性和回歸效果分析,得到一組樣本數(shù)據(jù):、、、,則下列說法不正確的是( )
A.殘差平方和越小的模型,擬合的效果越好
B.由樣本數(shù)據(jù)利用最小二乘法得到的回歸方程表示的直線必過樣本點的中心
C.若變量與之間的相關(guān)系數(shù),則變量與之間具有很強(qiáng)的線性相關(guān)性
D.用相關(guān)指數(shù)來刻畫回歸效果,越小,說明模型的擬合效果越好
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)動點與點,連線的斜率之積為.
(1)求動點的軌跡的方程;
(2)過點的直線與曲線交于,兩點,直線,與直線分別交于,兩點.求證:以為直徑的圓恒過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓E:的離心率是,短軸長為2,若點A,B分別是橢圓E的左右頂點,動點,,直線交橢圓E于P點.
(1)求橢圓E的方程
(2)①求證:是定值;
②設(shè)的面積為,四邊形的面積為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐中,,△為等邊三角形,二面角的余弦值為,當(dāng)三棱錐的體積最大時,其外接球的表面積為.則三棱錐體積的最大值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,
(1)求的單調(diào)區(qū)間;
(2)若,在其公共點處切線相同,求實數(shù)a的值;
(3)記,若函數(shù)存在兩個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com