【題目】已知長方體ABCD﹣A'B'C'D'中,AB=4,AD=3,AA'=2;
(1)求出異面直線AC'和BD所成角的余弦值;
(2)找出AC'與平面D'DBB'的交點,并說明理由.
【答案】
(1)解:建立如圖所示空間直角坐標(biāo)系,
∵AB=4,AD=3,AA'=2;
∴C'(4,3,2),B(4,0,0),D(0,3,0)
則: =(4,3,2), =(﹣4,3,0)
異面直線AC'和BD所成角的余弦值為: = =
(2)解:連接BD',DB'交于點O,則點O即為AC'與平面D'DBB'的交點,
根據(jù)長方體的幾何特征可得:
O為長方體ABCD﹣A'B'C'D'外接球的球心,
AC'為長方體ABCD﹣A'B'C'D'外接球的直徑,
故O為AC'中點,
又由BD',DB'交于點O,故O在平面D'DBB'上,
故O即為AC'與平面D'DBB'的交點
【解析】(1)建立空間直角坐標(biāo)系,求出兩條線段的方向向量,代入向量夾角公式,可得答案.(2)連接BD',DB'交于點O,則點O即為AC'與平面D'DBB'的交點,根據(jù)長方體的性質(zhì),可得結(jié)論.
【考點精析】認(rèn)真審題,首先需要了解異面直線及其所成的角(異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系),還要掌握空間中直線與直線之間的位置關(guān)系(相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點)的相關(guān)知識才是答題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有長分別為1m、2m、3m的鋼管各3根(每根鋼管質(zhì)地均勻、粗細(xì)相同附有不同的編號),從中隨機抽取2根(假設(shè)各鋼管被抽取的可能性是均等的),再將抽取的鋼管相接焊成筆直的一根.若X表示新焊成的鋼管的長度(焊接誤差不計).
(1)求X的分布列;
(2)若Y=﹣λ2X+λ+1,E(Y)>1,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義域為的函數(shù),若滿足①;②當(dāng),且時,都有;③當(dāng),且時, ,則稱為“偏對稱函數(shù)”.現(xiàn)給出四個函數(shù):
①; ② ;
③; ④.
則其中是“偏對稱函數(shù)”的函數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海南大學(xué)某餐飲中心為了解新生的飲食習(xí)慣,在全校新生中進行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:
喜歡甜品 | 不喜歡甜品 | 合計 | |
南方學(xué)生 | 60 | 20 | 80 |
北方學(xué)生 | 10 | 10 | 20 |
合計 | 70 | 30 | 100 |
(Ⅰ)根據(jù)表中數(shù)據(jù),問是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
(Ⅱ)已知在被調(diào)查的北方學(xué)生中有5名中文系的學(xué)生,其中2名喜歡甜品,現(xiàn)在從這5名學(xué)生中隨機抽取3人,求至多有1人喜歡甜品的概率.
附:,K2=
P(K2≥k0) | 0.10 | 0.05 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2ax+2,x∈[﹣5,5].
(1)求實數(shù)a的范圍,使y=f(x)在區(qū)間[﹣5,5]上是單調(diào)函數(shù).
(2)求f(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn , 若對任意的正整數(shù)n,總存在正整數(shù)m,使得Sn=am , 則稱{an}是“H數(shù)列”.
(1)若數(shù)列{an}的前n項和為Sn=2n(n∈N*),證明:{an}是“H數(shù)列”;
(2)設(shè){an}是等差數(shù)列,其首項a1=1,公差d<0,若{an}是“H數(shù)列”,求d的值;
(3)證明:對任意的等差數(shù)列{an},總存在兩個“H數(shù)列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, ).
(1)若的圖象在點處的切線方程為,求在區(qū)間上的最大值和最小值;
(2)若在區(qū)間上不是單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)g(x)=ex , f(x)= ,f(x)是定義在R上的奇函數(shù).
(1)求a,b的值;
(2)若關(guān)于t的方程f(2t2﹣mt)+f(1﹣t2)=0有兩個根α、β,且α>0,1<β<2,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓: .
(1)若圓與軸相切,求圓的方程;
(2)求圓心的軌跡方程;
(3)已知,圓與軸相交于兩點(點在點的左側(cè)).過點任作一條直線與圓: 相交于兩點.問:是否存在實數(shù),使得?若存在,求出實數(shù)的值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com