精英家教網 > 高中數學 > 題目詳情

【題目】海南大學某餐飲中心為了解新生的飲食習慣,在全校新生中進行了抽樣調查,調查結果如下表所示:

喜歡甜品

不喜歡甜品

合計

南方學生

60

20

80

北方學生

10

10

20

合計

70

30

100

(Ⅰ)根據表中數據,問是否有95%的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”;

(Ⅱ)已知在被調查的北方學生中有5名中文系的學生,其中2名喜歡甜品,現(xiàn)在從這5名學生中隨機抽取3人,求至多有1人喜歡甜品的概率.

附:,K2

P(K2k0)

0.10

0.05

0.010

k0

2.706

3.841

6.635

【答案】(1)詳見解析;(2) .

【解析】試題分析: (1)將2×2列聯(lián)表中數據代入K2,根據結果做出結論;(2)列舉出所有的的基本事件,找到“3人中至多有1人喜歡甜品”這一事件包含的基本事件,即可根據古典概型概率公式計算.

試題解析:

(1)將2×2列聯(lián)表中的數據代入公式計算,得

.

由于4.762>3.841,所以有95%的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”.

(2)從5名中文系學生中任取3人的一切可能結果所組成的基本事件空間Ω{(a1,a2b1),(a1,a2b2),(a1,a2b3),(a1b1,b2),(a1b1,b3),(a1b2,b3)(a2,b1,b2)(a2,b1b3),(a2,b2,b3),(b1b2,b3)},

其中ai表示喜歡甜品的學生,i12,bj表示不喜歡甜品的學生,j1,23.

Ω由10個基本事件組成,且這些基本事件的出現(xiàn)是等可能的.

A表示“3人中至多有1人喜歡甜品”這一事件,則A{(a1,b1,b2),(a1,b1,b3)(a1,b2,b3),(a2b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3)}

事件A由7個基本事件組成,因而P(A).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,正方體ABCD﹣A1B1C1D1中,M、N分別為棱C1D1、C1C的中點,有以下四個結論: ①直線AM與CC1是相交直線;
②直線AM與BN是平行直線;
③直線BN與MB1是異面直線;
④直線AM與DD1是異面直線.
其中正確的結論為(注:把你認為正確的結論的序號都填上).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線L經過點P(﹣4,﹣3),且被圓(x+1)2+(y+2)2=25截得的弦長為8,則直線L的方程是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.

1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;

2)規(guī)定理科考生需作答兩道理科題和一道文科題,該考生答對理科題的概率均為,答對文科題的概率均為,若每題答對得10分,否則得零分.現(xiàn)該生已抽到三道題(兩理一文),求其所得總分的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】學校某研究性學習小組在對學生上課注意力集中情況的調查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數y與聽課時間x(單位:分鐘)之間的關系滿足如圖所示的圖象,當x∈(0,12]時,圖象是二次函數圖象的一部分,其中頂點A(10,80),過點B(12,78);當x∈[12,40]時,圖象是線段BC,其中C(40,50).根據專家研究,當注意力指數大于62時,學習效果最佳.
(1)試求y=f(x)的函數關系式;
(2)教師在什么時段內安排內核心內容,能使得學生學習效果最佳?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,O為坐標原點,橢圓C1 + =1(a>b>0)的左、右焦點分別為F1 , F2 , 離心率為e1;雙曲線C2 =1的左、右焦點分別為F3 , F4 , 離心率為e2 , 已知e1e2= ,且|F2F4|= ﹣1.

(1)求C1、C2的方程;
(2)過F1作C1的不垂直于y軸的弦AB,M為AB的中點,當直線OM與C2交于P,Q兩點時,求四邊形APBQ面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知長方體ABCD﹣A'B'C'D'中,AB=4,AD=3,AA'=2;

(1)求出異面直線AC'和BD所成角的余弦值;
(2)找出AC'與平面D'DBB'的交點,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知A、B、C、D為圓O上的四點,直線DE為圓O的切線,AC∥DE,AC與BD相交于H點.

(1)求證:BD平分∠ABC;
(2)若AB=4,AD=6,BD=8,求AH的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正三棱錐P﹣ABC,點P,A,B,C都在半徑為 的球面上,若PA,PB,PC兩兩垂直,則球心到截面ABC的距離為

查看答案和解析>>

同步練習冊答案