14.已知△ABC的三頂點坐標(biāo)為A(3,0),B(0,4),C(0,0),D點的坐標(biāo)為(2,0),向△ABC內(nèi)部投一
點P,那么點P落在△ABD內(nèi)的概率為$\frac{1}{3}$.

分析 欲求的點落在△ABD內(nèi)的概率,則可求出△ABD與△ABC的面積之比,再根據(jù)幾何概型概率公式求解.

解答 解:因為D是AC 上的靠近A點的三等份點,
所以S△ABD=$\frac{1}{3}$S△ABC,
所以點落在△ABD內(nèi)的概率為P=$\frac{1}{3}$.
故答案為$\frac{1}{3}$.

點評 本題主要考查了幾何概率的求解,求出S△ABD=$\frac{1}{3}$S△ABC是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.cos20°sin50°-cos70°sin40°=$\frac{1}{2}$;cos20°+cos100°+cos140°=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知|$\overrightarrow{a}$|=2,向量$\overrightarrow{a}$在向量$\overrightarrow$上的投影為$\sqrt{3}$,則$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.正四面體ABCD的體積為V,M是正四面體ABCD內(nèi)部的點,若“${V_{M-ABC}}≥\frac{1}{4}V$”的事件為X,則概率P(X)為( 。
A.$\frac{17}{32}$B.$\frac{37}{64}$C.$\frac{19}{32}$D.$\frac{27}{64}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,邊長為4的正方形ABCD所在平面與正三角形PAD所在平面互相垂直,M,Q分別為PC,AD的中點.
(1)求證:PA∥平面MBD;
(2)求二面角P-BD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知集合A={x|-4<x<1},B={x|2x≥1}.
(Ⅰ)求A∩B,A∪B;
(II)設(shè)函數(shù)$f(x)=\sqrt{4-2x}+{log_2}(2x-1)$的定義域為C,求(∁RA)∩C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知點A(0,1),B(-2,1),向量$\overrightarrow e=(1,0)$,則$\overrightarrow{AB}$在$\overrightarrow e$方向上的投影為( 。
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.定義函數(shù)${f_a}(x)={4^x}-(a+1)•{2^x}+a$,其中x為自變量,a為常數(shù).
(I)若當(dāng)x∈[0,2]時,函數(shù)fa(x)的最小值為一1,求a之值;
(II)設(shè)全集U=R,集A={x|f3(x)≥fa(0)},B={x|fa(x)+fa(2-x)=f2(2)},且(∁UA)∩B≠∅中,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在銳角△ABC中,a,b,c分別是A,B,C的對邊,a=2bsinA.
(1)求B的大。
(2)若a=$\sqrt{2}$,b=1,求A的大小.

查看答案和解析>>

同步練習(xí)冊答案