4.cos20°sin50°-cos70°sin40°=$\frac{1}{2}$;cos20°+cos100°+cos140°=0.

分析 (1)由誘導(dǎo)公式,兩角差的正弦函數(shù)公式,特殊角的三角函數(shù)值即可化簡求值得解.
(2)先利用和差化積公式化簡即可得解.

解答 解:cos20°sin50°-cos70°sin40°=cos20°sin50°-sin20°cos50°=sin(50°-20°)=sin30°=$\frac{1}{2}$,
cos20°+cos100°+cos140°
=2cos($\frac{20°+100°}{2}$)cos($\frac{20°-100°}{2}$)+cos140°
=2cos60°cos40°+cos(180°-40°)
=cos40-cos40°
=0.
故答案為:$\frac{1}{2}$,0.

點評 本題主要考查了誘導(dǎo)公式,兩角差的正弦函數(shù)公式,特殊角的三角函數(shù)值,和差化積公式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.一個直角梯形上底、下底和高之比為$2:4:\sqrt{5}$,將此直角梯形以垂直于底的腰為軸旋轉(zhuǎn)一周形成一個圓臺,求這個圓臺上底面積、下底面積和側(cè)面積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是不共線向量,$\overrightarrow{AB}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{BC}$=-$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=λ$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,且A,B,D三點共線,則實數(shù)λ等于( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.袋中有外形、質(zhì)量完全相同的紅球、黑球、黃球、綠球共12個,從中任取一球,得到紅球的概率是$\frac{1}{4}$,得到黑球或黃球的概率是$\frac{7}{12}$,得到黃球或綠球的概率是$\frac{4}{12}$.
(1)試分別求得到黑球、黃球、綠球的概率;
(2)從中任取一球,求得到的不是“紅球或綠球”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知a=($\frac{1}{9}$)${\;}^{\frac{1}{3}}$,b=log93,c=3${\;}^{\frac{1}{9}}$,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.c>a>bC.a>c>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.定義在正實數(shù)集上的函數(shù)f(x)滿足:f(3x)=3f(x),且1≤x≤3時f(x)=1-|x-2|,若f(x)=f(2017),
則最小的實數(shù)x為413.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,則滿足f(2x-1)<f(3)的x取值集合是(-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=4sinx(cosx-sinx)+3
(Ⅰ)當(dāng)x∈(0,π)時,求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若f(x)在[0,θ]上的值域為[0,2$\sqrt{2}$+1],求cos2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知△ABC的三頂點坐標(biāo)為A(3,0),B(0,4),C(0,0),D點的坐標(biāo)為(2,0),向△ABC內(nèi)部投一
點P,那么點P落在△ABD內(nèi)的概率為$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊答案