【題目】函數(shù).

(1)若上遞增,求的最大值;

(2)若,存在,使得對(duì)任意,都有恒成立,求的取值范圍.

【答案】(1)-2;(2)

【解析】

1)因?yàn)?/span>上遞增,所以任意恒成立,由得出的單調(diào)性和最小值,即可求得答案;(2)分析題意得有最大值點(diǎn),求導(dǎo)分類(lèi)討論的正負(fù)從而研究的單調(diào)性,研究最大值是否存在即可.

(1)當(dāng)時(shí),

因?yàn)?/span>上遞增

所以任意恒成立

因?yàn)?/span>

當(dāng)時(shí),;當(dāng)時(shí),,

所以單調(diào)遞減,在單調(diào)遞增

所以當(dāng)時(shí)最小

所以,即

所以最大值為-2

(2)當(dāng)時(shí),

依題意有最大值點(diǎn)

因?yàn)?/span>,且

①當(dāng),遞減,

所以在,, 上遞增,不合題意

②當(dāng)上遞增,且

所以上遞減,在上遞增,

(i)當(dāng),,即在(上遞減,

所以,即上遞增,不合題意

(ⅱ)當(dāng)上遞減,上遞增

,所以存在,使得

且在遞增;在,遞減;符合題意,所求

(ⅲ)當(dāng)時(shí),上遞減,上遞增

,所以在,遞減,不合題意

(ⅳ)當(dāng)時(shí),,所以上遞減,又因?yàn)椋?/span>

所以在,遞減,不合題意

綜上所述,當(dāng)且僅當(dāng)時(shí),存在滿(mǎn)足題意的

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)A,B分別為雙曲線(xiàn) (a>0,b>0)的左、右頂點(diǎn),雙曲線(xiàn)的實(shí)軸長(zhǎng)為4,焦點(diǎn)到漸近線(xiàn)的距離為.

(1)求雙曲線(xiàn)的方程;

(2)已知直線(xiàn)yx-2與雙曲線(xiàn)的右支交于M,N兩點(diǎn),且在雙曲線(xiàn)的右支上存在點(diǎn)D,使,求t的值及點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知橢圓,如圖所示,斜率為k(k>0)且不過(guò)原點(diǎn)的直線(xiàn)l交橢圓C于兩點(diǎn)A,B,線(xiàn)段AB的中點(diǎn)為E,射線(xiàn)OE交橢圓C于點(diǎn)G,交直線(xiàn)x=﹣3于點(diǎn)D(﹣3,m).

(1)求m2+k2的最小值;

(2)若|OG|2=|OD||OE|,求證:直線(xiàn)l過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著教育信息化2.0時(shí)代的到來(lái),依托網(wǎng)絡(luò)進(jìn)行線(xiàn)上培訓(xùn)越來(lái)越便捷,逐步成為實(shí)現(xiàn)全民終身學(xué)習(xí)的重要支撐.最近某高校繼續(xù)教育學(xué)院采用線(xiàn)上和線(xiàn)下相結(jié)合的方式開(kāi)展了一次300名學(xué)員參加的“國(guó)學(xué)經(jīng)典誦讀”專(zhuān)題培訓(xùn).為了解參訓(xùn)學(xué)員對(duì)于線(xiàn)上培訓(xùn)、線(xiàn)下培訓(xùn)的滿(mǎn)意程度,學(xué)院隨機(jī)選取了50名學(xué)員,將他們分成兩組,每組25人,分別對(duì)線(xiàn)上、線(xiàn)下兩種培訓(xùn)進(jìn)行滿(mǎn)意度測(cè)評(píng),根據(jù)學(xué)員的評(píng)分(滿(mǎn)分100)繪制了如下莖葉圖:

(1)根據(jù)莖葉圖判斷學(xué)員對(duì)于線(xiàn)上、線(xiàn)下哪種培訓(xùn)的滿(mǎn)意度更高?并說(shuō)明理由;

(2)50名學(xué)員滿(mǎn)意度評(píng)分的中位數(shù),并將評(píng)分不超過(guò)、超過(guò)分別視為基本滿(mǎn)意”、“非常滿(mǎn)意”兩個(gè)等級(jí).

(i)利用樣本估計(jì)總體的思想,估算本次培訓(xùn)共有多少學(xué)員對(duì)線(xiàn)上培訓(xùn)非常滿(mǎn)意?

(ii)根據(jù)莖葉圖填寫(xiě)下面的列聯(lián)表:

并根據(jù)列聯(lián)表判斷能否有99.5%的把握認(rèn)為學(xué)員對(duì)兩種培訓(xùn)方式的滿(mǎn)意度有差異?

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)軸,的交點(diǎn)為,夾角為,與軸、軸正向同向的單位向量分別是.由平面向量基本定理,對(duì)于平面內(nèi)的任一向量,存在唯一的有序?qū)崝?shù)對(duì),使得,我們把叫做點(diǎn)在斜坐標(biāo)系中的坐標(biāo)(以下各點(diǎn)的坐標(biāo)都指在斜坐標(biāo)系中的坐標(biāo)).

1)若,為單位向量,且的夾角為,求點(diǎn)的坐標(biāo);

2)若,點(diǎn)的坐標(biāo)為,求向量的夾角;

3)若,求過(guò)點(diǎn)的直線(xiàn)的方程,使得原點(diǎn)到直線(xiàn)的距離最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋子中有四張卡片,分別寫(xiě)有“瓷、都、文、明”四個(gè)字,有放回地從中任取一張卡片,將三次抽取后“瓷”“都”兩個(gè)字都取到記為事件,用隨機(jī)模擬的方法估計(jì)事件發(fā)生的概率.利用電腦隨機(jī)產(chǎn)生整數(shù)0,1,2,3四個(gè)隨機(jī)數(shù),分別代表“瓷、都、文、明”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取卡片三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):

232

321

230

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估計(jì)事件發(fā)生的概率為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線(xiàn)的方程為,曲線(xiàn)是以坐標(biāo)原點(diǎn)為頂點(diǎn),直線(xiàn)為準(zhǔn)線(xiàn)的拋物線(xiàn).以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系.

(1)分別求出直線(xiàn)與曲線(xiàn)的極坐標(biāo)方程:

(2)點(diǎn)是曲線(xiàn)上位于第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),點(diǎn)是直線(xiàn)上位于第二象限內(nèi)的一個(gè)動(dòng)點(diǎn),且,請(qǐng)求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某中學(xué)學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)的情況,從該校抽了名學(xué)生,分析了這名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分),得到了如下的頻率分布直方圖:

1)求頻率分布直方圖中的值;

2)根據(jù)頻率分布直方圖估計(jì)該組數(shù)據(jù)的中位數(shù)(精確到);

3)在這名學(xué)生的數(shù)學(xué)成績(jī)中,從成績(jī)?cè)?/span>的學(xué)生中任選人,求次人的成績(jī)都在中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)。

(Ⅰ)求函數(shù)在區(qū)間上的最大值;

(Ⅱ)設(shè)在(0,2)內(nèi)恰有兩個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍;

(Ⅲ)設(shè),方程在區(qū)間有解,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案