【題目】已知函數(shù)。
(Ⅰ)求函數(shù)在區(qū)間上的最大值;
(Ⅱ)設(shè)在(0,2)內(nèi)恰有兩個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè),方程在區(qū)間有解,求實(shí)數(shù)的取值范圍。
【答案】(Ⅰ);(Ⅱ);(Ⅲ).
【解析】
(Ⅰ)由題意可得,二次求導(dǎo)有 ,據(jù)此可得單調(diào)遞增,據(jù)此求解函數(shù)的最大值即可.
(Ⅱ)由函數(shù)的解析式可得,則二次函數(shù)在(0,2)有兩個(gè)變號(hào)零點(diǎn),求證函數(shù) ,結(jié)合函數(shù)的性質(zhì)確定實(shí)數(shù)m的取值范圍即可.
(Ⅲ)由題意可得 ,分類討論:(。時(shí)不成立;
(ⅱ)時(shí),,構(gòu)造函數(shù),則,易知在上單調(diào)遞減,結(jié)合函數(shù)在端點(diǎn)處的極限值確定實(shí)數(shù)m的取值范圍即可.
(Ⅰ),由 ,
可知在內(nèi)單調(diào)遞增,,故單調(diào)遞增,
∴在上的最大值為.
(Ⅱ) ,
,
由題意知:在(0,2)有兩個(gè)變號(hào)零點(diǎn),
即在(0,2)有兩個(gè)變號(hào)零點(diǎn),
令 ,
令 ,且時(shí),,單調(diào)遞增,時(shí),,單調(diào)遞減,
又,∴.
(Ⅲ)∵ ,
∴
(ⅰ)時(shí),不成立;
(ⅱ)時(shí),,
設(shè),
∴ ,在上為單調(diào)遞減,
,
當(dāng)時(shí), 時(shí),
∴ ,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù).
(1)若,在上遞增,求的最大值;
(2)若,存在,使得對(duì)任意,都有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若函數(shù)存在唯一的零點(diǎn),且,則的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某集團(tuán)公司為了加強(qiáng)企業(yè)管理,樹(shù)立企業(yè)形象,考慮在公司內(nèi)部對(duì)遲到現(xiàn)象進(jìn)行處罰.現(xiàn)在員工中隨機(jī)抽取200人進(jìn)行調(diào)查,當(dāng)不處罰時(shí),有80人會(huì)遲到,處罰時(shí),得到如下數(shù)據(jù):
處罰金額(單位:元) | 50 | 100 | 150 | 200 |
遲到的人數(shù) | 50 | 40 | 20 | 0 |
若用表中數(shù)據(jù)所得頻率代替概率.
(Ⅰ)當(dāng)處罰金定為100元時(shí),員工遲到的概率會(huì)比不進(jìn)行處罰時(shí)降低多少?
(Ⅱ)將選取的200人中會(huì)遲到的員工分為,兩類:類員工在罰金不超過(guò)100元時(shí)就會(huì)改正行為;類是其他員工.現(xiàn)對(duì)類與類員工按分層抽樣的方法抽取4人依次進(jìn)行深度問(wèn)卷,則前兩位均為類員工的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù),。
(Ⅰ)若曲線在點(diǎn)處的切線與直線平行,求的值;
(Ⅱ)若,問(wèn)函數(shù)有無(wú)極值點(diǎn)?若有,請(qǐng)求出極值點(diǎn)的個(gè)數(shù);若沒(méi)有,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正四棱柱中,,,點(diǎn)E在上,且.
(1)求異面直線與所成角的正切值:
(2)求證:平面DBE;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐的底面為菱形,且,,,與相交于點(diǎn).
(1)求證:底面;
(2)求直線與平面所成的角的值;
(3)求平面與平面所成二面角的值.(用反三角函數(shù)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:()的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,左焦點(diǎn)為.
(1)求C的方程;
(2)設(shè)C的右頂點(diǎn)為A,不過(guò)C左、右頂點(diǎn)的直線l:與C相交于M,N兩點(diǎn),且.請(qǐng)問(wèn):直線l是否過(guò)定點(diǎn)?如果過(guò)定點(diǎn),求出該定點(diǎn)的坐標(biāo);如果不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),討論函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com