【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若函數(shù)存在唯一的零點,且,則的取值范圍.
【答案】(1) 函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.(2) .
【解析】
(1)先求得函數(shù)的導(dǎo)數(shù),然后利用導(dǎo)數(shù)的正負求出函數(shù)的單調(diào)區(qū)間.(2)先令,得,構(gòu)造函數(shù),對分成三類,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間,根據(jù)函數(shù)存在唯一的零點,且,列不等式,解不等式求得的取值范圍.
(1),
令,解得.
當時,;當時,.
故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.
(2)令,可得,令,且,
本題等價于函數(shù)存在唯一的零點,且 .
當時,,解得,函數(shù)有兩個零點,不符合題意,
當時,,令,解得或,
當時,函數(shù) 在上單調(diào)遞增,在上單調(diào)遞減,
又,又,,所以函數(shù)存在負數(shù)零點,不符合題意
當時,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,
又,故,解得 ,
綜上,的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓,如圖所示,斜率為k(k>0)且不過原點的直線l交橢圓C于兩點A,B,線段AB的中點為E,射線OE交橢圓C于點G,交直線x=﹣3于點D(﹣3,m).
(1)求m2+k2的最小值;
(2)若|OG|2=|OD||OE|,求證:直線l過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知直線的方程為,曲線是以坐標原點為頂點,直線為準線的拋物線.以坐標原點為極點,軸非負半軸為極軸建立極坐標系.
(1)分別求出直線與曲線的極坐標方程:
(2)點是曲線上位于第一象限內(nèi)的一個動點,點是直線上位于第二象限內(nèi)的一個動點,且,請求出的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某中學(xué)學(xué)生對數(shù)學(xué)學(xué)習(xí)的情況,從該校抽了名學(xué)生,分析了這名學(xué)生某次數(shù)學(xué)考試成績(單位:分),得到了如下的頻率分布直方圖:
(1)求頻率分布直方圖中的值;
(2)根據(jù)頻率分布直方圖估計該組數(shù)據(jù)的中位數(shù)(精確到);
(3)在這名學(xué)生的數(shù)學(xué)成績中,從成績在的學(xué)生中任選人,求次人的成績都在中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點為F,過點的直線l與E交于A,B兩點.當l過點F時,直線l的斜率為,當l的斜率不存在時,.
(1)求橢圓E的方程.
(2)以AB為直徑的圓是否過定點?若過定點,求出定點的坐標;若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線和的焦點分別為,點且為坐標原點).
(1)求拋物線的方程;
(2)過點的直線交的下半部分于點,交的左半部分于點,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)。
(Ⅰ)求函數(shù)在區(qū)間上的最大值;
(Ⅱ)設(shè)在(0,2)內(nèi)恰有兩個極值點,求實數(shù)的取值范圍;
(Ⅲ)設(shè),方程在區(qū)間有解,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,以為概率的事件是( )
A. 恰有1件一等品 B. 至少有一件一等品
C. 至多有一件一等品 D. 都不是一等品
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com