【題目】如圖,在四棱錐中,ABCD為菱形,平面ABCD,連接ACBD交于點O,,E是棱PC上的動點,連接DE.

1)求證:平面平面

2)當面積的最小值是4時,求此時點E到底面ABCD的距離.

【答案】1)證明見解析;(2.

【解析】

1)由題意可證得,,從而可得平面PAC,再由面面垂直的判定定理即可證出.

2)連接OE,由(1)可得面積的最小值是4時,可求出,作ACH,可知平面ABCD 即可求解.

1)證明:∵四邊形ABCD是菱形,∴.

平面ABCD平面ABCD,

.

,∴平面PAC.

平面BDE,

∴平面平面PAC.

2)解:如圖(1),連接OE,由(1)知平面PAC,平面PAC.

.

,由,得.

∵當時,OE取到最小值1.此時.

ACH,∵平面ABCD,∴平面ABCD,

如圖(2),由,得點E到底面ABCD的距離.

1 2

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐中,底面是正方形,平面,,的中點.

1)求證:平面平面;

2)求二面角的大小;

3)試判斷所在直線與平面是否平行,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某語文報社為研究學生課外閱讀時間與語文考試中的作文分數(shù)的關(guān)系,隨機調(diào)查了本市某中學高三文科班名學生每周課外閱讀時間(單位:小時)與高三下學期期末考試中語文作文分數(shù),數(shù)據(jù)如下表:

1

2

3

4

5

6

38

40

43

45

50

54

1)根據(jù)上述數(shù)據(jù),求出高三學生語文作文分數(shù)與該學生每周課外閱讀時間的線性回歸方程,并預(yù)測某學生每周課外閱讀時間為小時時其語文作文成績;

2)從這人中任選人,這人中至少有人課外閱讀時間不低于小時的概率.

參考公式:,其中,

參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著經(jīng)濟模式的改變,微商和電商已成為當今城鄉(xiāng)一種新型的購銷平臺.已知經(jīng)銷某種商品的電商在任何一個銷售季度內(nèi),每售出噸該商品可獲利潤萬元,未售出的商品,每噸虧損萬元.根據(jù)往年的銷售經(jīng)驗,得到一個銷售季度內(nèi)市場需求量的頻率分布直方圖如圖所示.已知電商為下一個銷售季度籌備了噸該商品.現(xiàn)以(單位:噸,)表示下一個銷售季度的市場需求量,(單位:萬元)表示該電商下一個銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.

1)將表示為的函數(shù),求出該函數(shù)表達式;

2)根據(jù)直方圖估計利潤不少于57萬元的概率;

3)根據(jù)頻率分布直方圖,估計一個銷售季度內(nèi)市場需求量的平均數(shù)與中位數(shù)的大。ūA舻叫(shù)點后一位).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的焦點為,過的直線兩點,過作與軸垂直的直線,又知點,直線記為,交于點.設(shè),已知當時,

(Ⅰ)求橢圓的方程;

(Ⅱ)求證:無論如何變化,點的橫坐標是定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若恒成立,求實數(shù)的最大值

(2)在(1)成立的條件下,正實數(shù),滿足,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)若,直線與曲線和曲線都相切,切點分別為,,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】芻甍,中國古代算術(shù)中的一種幾何圖形,《九章算術(shù)》中記載芻甍者,下有褒有廣,而上有褒無廣芻,草也;甍,屋蓋也.翻譯為底面有長有寬為矩形,頂部只有長沒有寬為一條棱,芻甍字面意思為茅草屋頂如圖,為一芻甍的三視圖,其中正視圖為等腰梯形,側(cè)視圖為等腰三角形,若用茅草搭建它(無底面,不考慮厚度),則需要覆蓋的面積至少為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐ABCD中,點EBD上,EAEBECED,BDCD,△ACD為正三角形,點M,N分別在AE,CD上運動(不含端點),且AMCN,則當四面體CEMN的體積取得最大值時,三棱錐ABCD的外接球的表面積為_____.

查看答案和解析>>

同步練習冊答案