【題目】已知三棱錐的兩條棱長為1,其余四條棱長為2,有下列命題:
該三棱錐的體積是;
該三棱錐內切球的半徑是;
該三棱錐外接球的表面積是.
其中正確的是
A. B. C. D.
【答案】B
【解析】
三棱錐中,,,取BC,PA的中點D,E,①利用過BC中點D與BC垂直的截面三角形PAD為底,以BC高求得體積,驗證正確;
②利用四面全等,由內切球球心為頂點把三棱錐等分四份,不難求得半徑r,驗證正確;
③首先確定DE中點為外接球球心,不難求解,驗證錯誤.
如圖所示,三棱錐中
,,
取BC,PA的中點D,E,作如圖的連接
則,,
平面PAD
并求得:;
,
三棱錐的體積為,正確;
設內切球的半徑為r,球心為M,
顯然四個面三角形全等,
解得,正確;
事實上,外接球球心O必在過D點與BC垂直的平面PAD內,
和過E點與PA垂直的平面BCE內,
故O點在平面PAD和平面BCE的交線DE上,
在內,
同樣,在內,
≌
,即O為DE的中點,
可求得外接球半徑R的平方:故錯誤
故選:B.
科目:高中數(shù)學 來源: 題型:
【題目】為了了解青少年的肥胖是否與常喝碳酸飲料有關,現(xiàn)對30名青少年進行調查,得到如下列聯(lián)表:
常喝 | 不常喝 | 總計 | |
肥胖 | 2 | ||
不肥胖 | 18 | ||
總計 | 30 |
已知從這30名青少年中隨機抽取1名,抽到肥胖青少年的概率為.
(1)請將列聯(lián)表補充完整;(2)是否有99.5%的把握認為青少年的肥胖與常喝碳酸飲料有關?
獨立性檢驗臨界值表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某地區(qū)觀眾對大型綜藝活動《中國好聲音》的收視情況,隨機抽取了100名觀眾進行調查,其中女性有55名.下面是根據調查結果繪制的觀眾收看該節(jié)目的場數(shù)與所對應的人數(shù)表:
將收看該節(jié)目場次不低于13場的觀眾稱為“歌迷”,已知“歌迷”中有10名女性.
(1)根據已知條件完成下面的列聯(lián)表,并據此資料我們能否有的把握認為“歌迷”與性別有關?
(2)將收看該節(jié)目所有場次(14場)的觀眾稱為“超級歌迷”,已知“超級歌迷”中有2名女性,若從“超級歌迷”中任意選取2人,求至少有1名女性觀眾的概率.
附:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為(其中為參數(shù)).現(xiàn)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)寫出直線普通方程和曲線的直角坐標方程;
(2)過點,且與直線平行的直線交于兩點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】獨立性檢驗中,假設:運動員受傷與不做熱身運動沒有關系.在上述假設成立的情況下,計算得的觀測值.下列結論正確的是( )
附:
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
A. 在犯錯誤的概率不超過0.01的前提下,認為運動員受傷與不做熱身運動有關
B. 在犯錯誤的概率不超過0.01的前提下,認為運動員受傷與不做熱身運動無關
C. 在犯錯誤的概率不超過0.005的前提下,認為運動員受傷與不做熱身運動有關
D. 在犯錯誤的概率不超過0.005的前提下,認為運動員受傷與不做熱身運動無關
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線的參數(shù)方程為,為參數(shù),在以坐標原點O為極點,x軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.
求曲線的極坐標方程和曲線的直角坐標方程;
若射線l:與曲線,的交點分別為A,B異于原點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),).以坐標原點為極點,軸正半軸為極軸建立極坐標系,已知直線的極坐標方程為.
(1)設是曲線上的一個動點,若點到直線的距離的最大值為,求的值;
(2)若曲線上任意一點都滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近期中央電視臺播出的《中國詩詞大會》火遍全國,下面是組委會在選拔賽時隨機抽取的100名選手的成績,按成績分組,得到的頻率分布表如下所示.
題號 | 分組 | 頻數(shù) | 頻率 |
第1組 | 0.100 | ||
第2組 | ① | ||
第3組 | 20 | ② | |
第4組 | 20 | 0.200 | |
第5組 | 10 | 0.100 | |
第6組 | 100 | 1.00 |
(1)請先求出頻率分布表中①、②位置的相應數(shù)據,再完成如下的頻率分布直方圖;
(2)組委會決定在5名(其中第3組2名,第4組2名,第5組1名)選手中隨機抽取2名選接受考官進行面試,求第4組至少有1名選手被考官面試的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為了增強學生的記憶力和辨識力,組織了一場類似《最強大腦》的PK賽,兩隊各由4名選手組成,每局兩隊各派一名選手PK,比賽四局.除第三局勝者得2分外,其余各局勝者均得1分,每局的負者得0分.假設每局比賽A隊選手獲勝的概率均為,且各局比賽結果相互獨立,比賽結束時A隊的得分高于B隊的得分的概率為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com