【題目】已知數(shù)列{an}中,已知a1=1, ,
(1)求證數(shù)列{ }是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)若對(duì)一切n∈N* , 等式a1b1+a2b2+a3b3+…+anbn=2n恒成立,求數(shù)列{bn}的通項(xiàng)公式.

【答案】
(1)解:由 ,

得an+1+2anan+1=an,

即an﹣an+1=2anan+1

兩邊同除以anan+1,得, ,

,

所以數(shù)列{ }是首項(xiàng)為1,公差為2的等差數(shù)列


(2)解:由(1) ,

所以數(shù)列{an}的通項(xiàng)公式


(3)解:因?yàn)閷?duì)一切n∈N*,

有a1b1+a2b2+a3b3+…+anbn=2n

所以當(dāng)n≥2時(shí),a1b1+a2b2+a3b3+…+an1bn1=2n1

①﹣②得,當(dāng)n≥2時(shí),

anbn=2n1,

,

所以bn=(2n﹣1)2n1

又n=1時(shí),a1b1=21,a1=1,

所以b1=2;

綜上得


【解析】(1)由 ,得an﹣an+1=2anan+1 , 兩邊同除以anan+1得, ,由此能夠證明數(shù)列{ }是等差數(shù)列.(2)由 ,知 .(3)因?yàn)閷?duì)一切n∈N* , 有a1b1+a2b2+a3b3+…+anbn=2n , 當(dāng)n≥2時(shí),a1b1+a2b2+a3b3+…+an1bn1=2n1 , 當(dāng)n≥2時(shí),anbn=2n1 , 又 ,所以bn=(2n﹣1)2n1 , 由此能夠求出數(shù)列{bn}的通項(xiàng)公式.
【考點(diǎn)精析】關(guān)于本題考查的等差關(guān)系的確定和數(shù)列的前n項(xiàng)和,需要了解如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),即=d ,(n≥2,n∈N)那么這個(gè)數(shù)列就叫做等差數(shù)列;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體ABCD﹣A1B1C1D1 , 則過點(diǎn)A與AB、BC、CC1所成角均相等的直線有(
A.1條
B.2條
C.4條
D.無數(shù)條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的方程為.

(1)求圓的直角坐標(biāo)方程;

(2)設(shè)圓與直線交于點(diǎn),若點(diǎn)的坐標(biāo)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中, , .?dāng)?shù)列的前n項(xiàng)和為,滿足,

(1)求數(shù)列的通項(xiàng)公式;

(2)數(shù)列能否為等差數(shù)列?若能,求其通項(xiàng)公式;若不能,試說明理由;

(3)若數(shù)列是各項(xiàng)均為正整數(shù)的遞增數(shù)列,設(shè),則當(dāng) , , , 均成等差數(shù)列時(shí),求正整數(shù), , 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)若 ,求曲線 在點(diǎn) 處的切線方程;

(2)若 處取得極小值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為 ,且過點(diǎn)D(2,0).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn) ,若P是橢圓上的動(dòng)點(diǎn),求線段PA的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐P﹣ABCD及其三視圖如下圖所示,E是側(cè)棱PC上的動(dòng)點(diǎn).
(Ⅰ)求四棱錐P﹣ABCD的體積;
(Ⅱ)不論點(diǎn)E在何位置,是否都有BD⊥AE?試證明你的結(jié)論;
(Ⅲ)若點(diǎn)E為PC的中點(diǎn),求二面角D﹣AE﹣B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓F1:(x+1)2+y2=16,定點(diǎn)F2(1,0),A是圓F1上的一動(dòng)點(diǎn),線段F2A的垂直平分線交半徑F1AP點(diǎn).

(1)求P點(diǎn)的軌跡C的方程;

(2)四邊形EFGH的四個(gè)頂點(diǎn)都在曲線C上,且對(duì)角線EG,FH過原點(diǎn)O,

kEGkFH=-,求證:四邊形EFGH的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校課改實(shí)行選修走班制,現(xiàn)有甲,乙,丙,丁四位學(xué)生準(zhǔn)備選修物理,化學(xué),生物三個(gè)科目.每位學(xué)生只選修一個(gè)科目,且選修其中任何一個(gè)科目是等可能的.
(1)恰有2人選修物理的概率;
(2)選修科目個(gè)數(shù)ξ的分布列及期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案