【題目】某生產(chǎn)基地有五臺(tái)機(jī)器,現(xiàn)有五項(xiàng)工作待完成,每臺(tái)機(jī)器完成每項(xiàng)工作后獲得的效益值如表所示.若每臺(tái)機(jī)器只完成一項(xiàng)工作,且完成五項(xiàng)工作后獲得的效益值總和最大,則下列敘述錯(cuò)誤的的是_____________.
①甲只能承擔(dān)第四項(xiàng)工作
②乙不能承擔(dān)第二項(xiàng)工作
③丙可以不承擔(dān)第三項(xiàng)工作
④丁可以承擔(dān)第三項(xiàng)工作
【答案】①③④
【解析】
由表可知,五項(xiàng)工作后獲得的效益綜合最大為,但不能同時(shí)取值,再分類討論,得出乙若不承擔(dān)第二項(xiàng)工作,承擔(dān)第一項(xiàng)工作,甲承擔(dān)第二項(xiàng)工作,在由戊承擔(dān)第四項(xiàng)工作,即可得出結(jié)論.
由表知道,五項(xiàng)工作后獲得的效益值總和最大為,但不能同時(shí)取得,要使得總和最大,甲可以承擔(dān)第一或四項(xiàng)工作,并只能承擔(dān)第三項(xiàng)工作,丁則不可以承擔(dān)工作,所以丁承擔(dān)第五項(xiàng)工作,乙若承擔(dān)第四項(xiàng)工作,戊承擔(dān)第一項(xiàng)工作,
此時(shí)效益值總和為;
乙若不承擔(dān)第二項(xiàng)工作,承擔(dān)第一項(xiàng),甲承擔(dān)第二項(xiàng)工作,則戊承擔(dān)第四項(xiàng)工作,
此時(shí)效益值總和為,所以乙不承擔(dān)第二項(xiàng)工作,
所以①③④不正確.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),圓.
(1)若點(diǎn)點(diǎn)都為圓上的動(dòng)點(diǎn),且,求弦中點(diǎn)所形成的曲線的方程;
(2)若直線過點(diǎn),且被(1)中曲線截得的弦長為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)的零點(diǎn)的個(gè)數(shù)并說明理由;
(2)求函數(shù)零點(diǎn)所在的一個(gè)區(qū)間,使這個(gè)區(qū)間的長度不超過;
(3)若,對于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為弘揚(yáng)中華傳統(tǒng)文化,學(xué)校課外閱讀興趣小組進(jìn)行每日一小時(shí)的“經(jīng)典名著”和“古詩詞”的閱讀活動(dòng). 根據(jù)調(diào)查,小明同學(xué)閱讀兩類讀物的閱讀量統(tǒng)計(jì)如下:
小明閱讀“經(jīng)典名著”的閱讀量(單位:字)與時(shí)間t(單位:分鐘)滿足二次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表所示;
t | 0 | 10 | 20 | 30 |
0 | 2700 | 5200 | 7500 |
閱讀“古詩詞”的閱讀量(單位:字)與時(shí)間t(單位:分鐘)滿足如圖1所示的關(guān)系.
(1)請分別寫出函數(shù)和的解析式;
(2)在每天的一小時(shí)課外閱讀活動(dòng)中,小明如何分配“經(jīng)典名著”和“古詩詞”的閱讀時(shí)間,使每天的閱讀量最大,最大值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:關(guān)于直線:對稱的圓為.
(Ⅰ)求圓的方程;
(Ⅱ)過點(diǎn)作直線與圓交于,兩點(diǎn),是坐標(biāo)原點(diǎn),是否存在這樣的直線,使得在平行四邊形(和為對角線)中?若存在,求出所有滿足條件的直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),下列結(jié)論中正確的是( )
A.,
B.函數(shù)的圖象一定關(guān)于原點(diǎn)成中心對稱
C.若是的極小值點(diǎn),則在區(qū)間單調(diào)遞減
D.若是的極值點(diǎn),則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)求曲線在處的切線方程;
(Ⅱ)當(dāng)時(shí),求的零點(diǎn)個(gè)數(shù);
(Ⅲ)若函數(shù)在上是增函數(shù),求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com