(本小題滿分14分)
已知函數(shù),其中.
(Ⅰ)求函數(shù)的單調區(qū)間;
(Ⅱ)若直線是曲線的切線,求實數(shù)的值;
(Ⅲ)設,求在區(qū)間上的最大值.(其中為自然對數(shù)的底數(shù))

(Ⅰ)當時,單調增加

(Ⅱ)當時,單調減少,在單調增加;
時,;
時,;
(Ⅲ)時,;時,。

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知:函數(shù),其中.
(Ⅰ)若的極值點,求的值;
(Ⅱ)求的單調區(qū)間;
(Ⅲ)若上的最大值是,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)曲線C:,過點的切線方程為,且交于曲線兩點,求切線與C圍成的圖形的面積。  

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

本題滿分15分)已知函數(shù).
(Ⅰ)當時,求函數(shù)的極值點;
(Ⅱ)若函數(shù)在導函數(shù)的單調區(qū)間上也是單調的,求的取值范圍;
(Ⅲ) 當時,設,且是函數(shù)的極值點,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題12分)
已知函有極值,且曲線處的切線斜率為3.
(1)求函數(shù)的解析式;
(2)求在[-4,1]上的最大值和最小值。
(3)函數(shù)有三個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
已知函數(shù),
(1)求為何值時,上取得最大值;
(2)設,若是單調遞增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
已知函數(shù)在(0,1)上是增函數(shù).(1)求的取值范圍;
(2)設),試求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分) 設的極小值為,其導函數(shù)的圖像開口向下且經過點.
(Ⅰ)求的解析式;(Ⅱ)方程有唯一實數(shù)解,求的取值范圍.
(Ⅲ)若對都有恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分10分)
設函數(shù)為奇函數(shù),其圖象在點處的切線與直線垂直,導函數(shù)的最小值為.試求,的值。

查看答案和解析>>

同步練習冊答案