(本題滿分12分)
已知函數(shù)在(0,1)上是增函數(shù).(1)求的取值范圍;
(2)設(shè)),試求函數(shù)的最小值.

(1);(2)當(dāng)時(shí),的最小值為;當(dāng)時(shí),的最小值為。

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若的單調(diào)增區(qū)間是(0,1)求m的值。
(2)當(dāng)時(shí),函數(shù)的圖象上任意一點(diǎn)的切線斜率恒大于3m,求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù),其中.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若直線是曲線的切線,求實(shí)數(shù)的值;
(Ⅲ)設(shè),求在區(qū)間上的最大值.(其中為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù)
(1)討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);
(2)若函數(shù)處取得極值,對(duì),恒成立,
求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)已知函數(shù)
(1)若在的圖象上橫坐標(biāo)為的點(diǎn)處存在垂直于y 軸的切線,求a 的值;
(2)若在區(qū)間(-2,3)內(nèi)有兩個(gè)不同的極值點(diǎn),求a 取值范圍;
(3)在(1)的條件下,是否存在實(shí)數(shù)m,使得函數(shù)的圖象與函數(shù)的圖象恰有三個(gè)交點(diǎn),若存在,試出實(shí)數(shù)m 的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù)
(Ⅰ)若,求的單調(diào)區(qū)間;
(Ⅱ)在(Ⅰ)的條件下,對(duì),都有,求實(shí)數(shù)的取值范圍;
(Ⅲ)若上單調(diào)遞增,在上單調(diào)遞減,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)).
(1)試討論在區(qū)間上的單調(diào)性;
(2)當(dāng)時(shí),曲線上總存在相異兩點(diǎn),,使得曲線在點(diǎn),處的切線互相平行,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知實(shí)數(shù)a滿足1<a≤2,設(shè)函數(shù)f (x)=x3x2+ax.
(Ⅰ) 當(dāng)a=2時(shí),求f (x)的極小值;
(Ⅱ) 若函數(shù)g(x)=4x3+3bx2-6(b+2)x (b∈R) 的極小值點(diǎn)與f (x)的極小值點(diǎn)相同,
求證:g(x)的極大值小于等于10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分)已知函數(shù)
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時(shí),設(shè),若存在,,使
求實(shí)數(shù)的取值范圍。為自然對(duì)數(shù)的底數(shù),

查看答案和解析>>

同步練習(xí)冊(cè)答案