【題目】已知橢圓:的兩個(gè)焦點(diǎn)為,,焦距為,直線:與橢圓相交于,兩點(diǎn),為弦的中點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線:與橢圓相交于不同的兩點(diǎn),,,若(為坐標(biāo)原點(diǎn)),求的取值范圍.
【答案】(1)(2)或
【解析】
(1)因?yàn)?/span>為弦的中點(diǎn),設(shè),,將其代入利用點(diǎn)差法,即可求得答案.
(2)因?yàn)?/span>,,三點(diǎn)共線,, 根據(jù)三點(diǎn)共線性質(zhì)可得:,則,將直線和橢圓聯(lián)立方程消掉,結(jié)合已知,利用韋達(dá)定理即可求得答案.
(1) 焦距為,則,
設(shè),,
為弦的中點(diǎn),根據(jù)中點(diǎn)坐標(biāo)公式可得:,,
又 將其,代入橢圓:
將兩式作差可得:,
,
——①.
——②
由①②得:
橢圓的標(biāo)準(zhǔn)方程為.
(2) ,,三點(diǎn)共線,
根據(jù)三點(diǎn)共線性質(zhì)可得: ,則
設(shè),,則,
.
將直線和橢圓聯(lián)立方程消掉.
可得:.
——①,
根據(jù)韋達(dá)定理:,,
代入,可得:,,
,即.
,,
——②,
代入①式得,即,
,
滿足②式,
或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空氣質(zhì)量指數(shù)是反映空氣質(zhì)量狀況的指數(shù),指數(shù)值越小,表明空氣質(zhì)量越好,其對應(yīng)關(guān)系如表:
指數(shù)值 | ||||||
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
如圖是某市10月1日—20日指數(shù)變化趨勢:
下列敘述正確的是( )
A.該市10月的前半個(gè)月的空氣質(zhì)量越來越好
B.這20天中的中度污染及以上的天數(shù)占
C.這20天中指數(shù)值的中位數(shù)略高于100
D.總體來說,該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一幢高樓上安放了一塊高約10 米的 LED 廣告屏,一測量愛好者在與高樓底部同一水平線上的 C 處測得廣告屏頂端A 處的仰角為 31.80°,再向大樓前進(jìn) 20 米到 D 處,測得廣告屏頂端 A 處的仰角為 37.38°(人的高度忽略不計(jì)).
(1)求大樓的高度(從地面到廣告屏頂端)(精確到 1 米);
(2)若大樓的前方是一片公園空地,空地上可以安放一些長椅,為使坐在其中一個(gè)長椅上觀看廣告屏最清晰(長 椅的高度忽略不計(jì)),長椅需安置在距大樓底部 E 處多遠(yuǎn)?已知視角 ∠AMB( M 為觀測者的位置, B 為廣告屏 底部)越大,觀看得越清晰.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,側(cè)面,已知,,,點(diǎn)是棱的中點(diǎn).
(1)求證:平面;
(2)求二面角的余弦值;
(3)在棱上是否存在一點(diǎn),使得與平面所成角的正弦值為,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“干支紀(jì)年法”是中國歷法上自古以來就一直使用的紀(jì)年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字開始,“地支”以“子”字開始,兩者按照干支順序相配,構(gòu)成了“干支紀(jì)年法”,其相配順序?yàn)椋杭鬃、乙丑、丙?/span>癸酉、甲戌、乙亥、丙子癸未、甲申、乙酉、丙戌癸巳癸亥,60為一個(gè)周期,周而復(fù)始,循環(huán)記錄.按照“干支紀(jì)年法”,中華人民共和國成立的那年為己丑年,則2013年為( )
A.甲巳年B.壬辰年C.癸巳年D.辛卯年
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在正項(xiàng)數(shù)列中,首項(xiàng),點(diǎn)在雙曲線上,數(shù)列中,點(diǎn)在直線上,其中是數(shù)列的前項(xiàng)和.
(1)求數(shù)列、的通項(xiàng)公式;
(2)若,求證: 數(shù)列為遞減數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)有唯一的極小值點(diǎn),求實(shí)數(shù)的取值范圍;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正四棱柱ABCD﹣A1B1C1D1中,O是BD的中點(diǎn),E是棱CC1上任意一點(diǎn).
(1)證明:BD⊥A1E;
(2)如果AB=2,,OE⊥A1E,求AA1的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com