5.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),
(1)證明:PA∥平面EDB
(2)證明:平面BDE⊥平面PCB.

分析 (1)連結(jié)AC,設(shè)AC與BD交于O點(diǎn),連結(jié)EO,易證EO為△PAC的中位線,從而OE∥PA,再利用線面平行的判斷定理即可證得PA∥平面BDE;
(2)依題意,易證DE⊥底面PBC,再利用面面垂直的判斷定理即可證得平面BDE⊥平面PBC.

解答 證明:(1)連結(jié)AC,設(shè)AC與BD交于O點(diǎn),連結(jié)EO.
∵底面ABCD是正方形,
∴O為AC的中點(diǎn),又E為PC的中點(diǎn),
∴OE∥PA,
∵OE?平面BDE,PA?平面BDE,
∴PA∥平面BDE.…(6分)
(2)∵PD=DC,E是PC的中點(diǎn),
∴DE⊥PC.
∵PD⊥底面ABCD,
∴PD⊥AD.又由于AD⊥CD,PD∩CD=D,故AD⊥底面PCD,
所以有AD⊥DE.又由題意得AD∥BC,故BC⊥DE.
于是,由BC∩PC=C,DE⊥PC,BC⊥DE可得DE⊥底面PBC.
故可得平面BDE⊥平面PBC.…(12分)

點(diǎn)評(píng) 本題考查直線與平面平行的判定,考查平面與平面垂直的判定,在(1)中證得EO為△PAC的中位線,在(2)中證得DE⊥底面PBC是關(guān)鍵,考查推理證明的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=|x+1|-|x-2|
(I)若不等式f(x)≤a的解集為(-∞,$\frac{1}{2}$].求a的值;
(II)若?x∈R.使f(x)<m2-4m,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=lnx.
(1)求f(x)在點(diǎn)(1,f(1))處的切線;
(2)若?x∈[1,+∞),f(x)≤m(${x-\frac{1}{x}}$)恒成立,求實(shí)數(shù)m的取值范圍;
(3)求證:ln(2n+1)<$\sum_{k=1}^n{\frac{4k}{{4{k^2}-1}}},({n∈{N_+}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=$\sqrt{3}$sinx-acosx 的圖象的一條對(duì)稱軸是x=$\frac{5π}{3}$,則g(x)=asinx+cosx=Asin(ωx+φ)(A>0,ω>0)的一個(gè)初相是( 。
A.-$\frac{3π}{4}$B.-$\frac{π}{4}$C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.?dāng)?shù)列{an}滿足a1+2a2+…+nan=4-$\frac{n+2}{{{2^{n-1}}}}$,n∈N*
(1)求a3的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)${b_n}=1+{log_{\frac{1}{2}}}{a_n}$,求證:$\frac{1}{b_1^2}+\frac{1}{b_2^2}+…+\frac{1}{b_n^2}<\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=$\frac{{x}^{2}+1}{x}$的奇偶性為(  )
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.既不是奇函數(shù)又不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=sinx-cosx,x∈[0,$\frac{π}{2}$]的最小值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知圓x2+y2=16,直線l:y=x+b.圓上至少有三個(gè)點(diǎn)到直線l的距離等于1,則b的取值范圍是-3$\sqrt{2}$≤b≤3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}為等差數(shù)列且a2=9,a10=-7.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)若bn=|an|,求數(shù)列bn的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案