某工廠建一個(gè)長(zhǎng)方形無蓋蓄水池,其容積為4800m3,深度為3m。如果池底每1 m2的造價(jià)為150元,池壁每1 m2的造價(jià)為120元,怎么設(shè)計(jì)水池能使造價(jià)最低?最低造價(jià)多少元?
297600
解析試題分析:水池呈長(zhǎng)方形,它的高是3m,底面的長(zhǎng)與寬沒有確定;如果底面的長(zhǎng)與寬確定了,水池的總造價(jià)也就確定了;可以設(shè)底面的長(zhǎng)與寬分別為xm,ym,水池總造價(jià)為z元,建立函數(shù)關(guān)系式,求出z的最小值.
則寬為,總造價(jià)為
當(dāng)m時(shí),等號(hào)成立。
所以設(shè)計(jì)池底為40m,寬為40 m時(shí),總造價(jià)最低位297600元。
考點(diǎn):基本不等式在最值問題中的應(yīng)用;函數(shù)的最值及其幾何意義.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
某房地產(chǎn)開發(fā)公司計(jì)劃在一樓區(qū)內(nèi)建造一個(gè)長(zhǎng)方形公園ABCD,公園由形狀為長(zhǎng)方形A1B1C1D1的休閑區(qū)和環(huán)公園人行道(陰影部分)組成.已知休閑區(qū)A1B1C1D1的面積為4000平方米,人行道的寬分別為4米和10米(如圖所示).
(1)若設(shè)休閑區(qū)的長(zhǎng)和寬的比=x(x>1),求公園ABCD所占面積S關(guān)于x的函數(shù)S(x)的解析式;
(2)要使公園所占面積最小,則休閑區(qū)A1B1C1D1的長(zhǎng)和寬該如何設(shè)計(jì)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
圖1是某斜拉式大橋圖片,為了了解橋的一些結(jié)構(gòu)情況,學(xué)校數(shù)學(xué)興趣小組將大橋的結(jié)構(gòu)進(jìn)行了簡(jiǎn)化,取其部分可抽象成圖2所示的模型,其中橋塔、與橋面垂直,通過測(cè)量得知,,當(dāng)為中點(diǎn)時(shí),.
(1)求的長(zhǎng);
(2)試問在線段的何處時(shí),達(dá)到最大.
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一段長(zhǎng)為36m的籬笆圍成一個(gè)矩形菜園, 問這個(gè)矩形的長(zhǎng),寬各為多少時(shí),菜園的面積最大.最大面積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知△ABC的頂點(diǎn)A(3,0),B(0,1),C(1,1),P(x,y)在△ABC內(nèi)部(包括邊界),若目標(biāo)函數(shù)z=(a≠0)取得最大值時(shí)的最優(yōu)解有無窮多組,則點(diǎn)(a,b)的軌跡可能是( 。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com